
Digital
Acceleration
How the C3 AI Suite Accelerates AI Application
Development by 40x or More

As organizations apply artificial intelligence (AI) to
drive digital transformation, they are seeking
ways to accelerate AI application development
and deployment in order to achieve faster
time-to-value. The current trend in building AI
applications is to assemble native services of a
general-purpose cloud service provider (CSP)
like AWS, Microsoft Azure, Google Cloud, or IBM
Cloud. An alternative approach is to use the C3
AI Suite—a software suite purpose-built for
developing enterprise AI applications.

C3.ai commissioned an expert third-party
developer firm to build a predictive maintenance
AI application using both approaches. The
third-party team found that using the C3 AI Suite
reduced the total development effort by a factor
of 40 compared to the assemble-on-CSP
approach. They concluded that many enterprises
would realize significantly greater reductions in
time and effort—by a factor of 50 to 100—using
the C3 AI Suite.

The C3 AI Suite was able to achieve 40x or
greater acceleration over the assemble-on-CSP
approach due to five key factors:

• Cohesive design – purpose-built for AI
application development

• Model-driven architecture – provides an
abstraction layer that removes complexity

• Time series engine – automatically time-aligns
all data across all sources

• AI-centric processing – data flow and analytics
engine optimized for AI applications

• Built-in bindings to tools, languages, and
frameworks preferred by developers and data
scientists

This paper describes the comparison project,
providing a detailed breakdown of the
development effort using both approaches, and
explains how the C3 AI Suite accelerated each
stage of the process.

Summary

C3.ai | Digital Acceleration

| 01© 2019 C3.ai | All Rights Reserved | 19_0415

Today’s organizations increasingly recognize the
need to digitally transform in order to survive and
thrive in the 21st century. Digital transformation
requires the ability to create new value by
harnessing four major technology
vectors—elastic cloud computing, big data,
artificial intelligence, and the internet of things.
An essential requirement is the infusion of AI into
every aspect of an organization’s operations.

Rapid advances in AI in recent years have made
it possible to achieve step-function
improvements in business processes throughout
the value chain. In industry after industry,
organizations are now vying to establish an early
lead in AI. Organizations that successfully apply
AI can realize hundreds of millions to billions of
dollars in annual economic value through
increased operational efficiency, reduced costs,
higher customer satisfaction, and new revenue
streams.

Some of this value accrues from applying AI to
relatively simple data sets and business
processes like sales forecasting, customer
churn, and facility energy management. But the
vast majority of the value will come from
applying AI to complex data sets and business
processes, such as supply network and
inventory optimization, process optimization,
maintenance optimization, fraud detection, and
many other areas.

These complex AI applications require an
architecture that ingests data from multiple
devices (e.g., sensors, controls, machines) and
transactional systems in near-real time; blends
together and enhances these data sets with
master data from an array of enterprise,
operational, and third-party data sources; uses
the unified data to train predictive and
optimization models to generate actionable
insights; and embeds these insights into a
business process. A typical enterprise or large
organization will deploy hundreds, perhaps
thousands of these AI applications across its
operations.

The Digital Transformation
Imperative

C3.ai | Digital Acceleration

| 02© 2019 C3.ai | All Rights Reserved | 19_0415

The critical question for organizations is how to
accelerate digital transformation in order to
capture benefits early, establish first-mover
advantage, and guard against being outpaced
by competitors.

Approach 1: Assemble on CSP

The current trend for developing enterprise AI
applications is to take a “building blocks”
approach by assembling native microservices of
cloud service providers like Amazon Web
Services (AWS), Microsoft Azure, Google Cloud,
or IBM Cloud. In this approach, the
end-customer (and/or its consulting partner) first
integrates the CSP’s microservices as a
foundation to design, develop, host, and operate
an application, followed by building bespoke
application logic.

Approach 2: C3 AI Suite

C3.ai offers a different approach. The C3 AI Suite
is a purpose-built platform with pre-integrated
services, and is designed with a model-driven
architecture. It offers a cohesive,
low-code/no-code development environment
with a complete and comprehensive set of tools
and services to design, build, deploy, and
operate advanced, enterprise-scale AI
applications.

These applications can use the infrastructure
provided by any cloud service provider—AWS,
Azure, Google Cloud, or IBM—as well as bare
metal servers in an organization’s data center or
private cloud. The C3 AI Suite is designed and
purpose-built specifically to enable rapid
development and deployment of AI applications
and efficient operation and maintenance of those
applications over time.

To demonstrate the difference in these two
approaches, C3.ai commissioned an expert third
party—a Premier AWS Consulting Partner, with
AWS competencies in Big Data and Machine
Learning—to build a predictive maintenance AI
application using both approaches. The firm has
developed and deployed hundreds of
applications on AWS for many Fortune 2000
customers. The developers on this project each
had several years of AWS experience.

How to Accelerate Digital
Transformation?

C3.ai | Digital Acceleration

| 03© 2019 C3.ai | All Rights Reserved | 19_0415

A team of highly skilled developers was assigned
to build a simple Predictive Maintenance
Application for Light Bulbs using two
approaches: (1) native AWS services (the “AWS
Application”) and (2) the C3 AI Suite (the “C3
Application”). The team recorded and compared
the time and effort required to develop the
identical application using AWS and the C3 AI
Suite.

The objective of the application is to predict the
likelihood of light bulb failure within the following
30 days from a given point in time. The industry
best practice for making such predictions is to
train a machine learning model using the
provided data. With this model in place,
predictions must be generated as new data are
received for each bulb.

In both cases, the developer team sought to
build an application that:

• ingests, unifies, and federates the raw data;

• processes the data;

• trains a machine learning model to predict
which light bulb is likely to fail in the next 30
days;

• provides an application user interface.

The Project Assignment and
Application Specifications

C3.ai | Digital Acceleration

The data sets provided for the application
included:

• Bulb type, wattage, location, manufacturer,
and date of manufacture

• Power grid status

• Bulb fixture location

• Bulb telemetry including watts, lumens,
voltage, and temperature

• Bulb event history

• Bulb fixture data

Building a risk prediction model for each light
bulb required the telemetry/measurement data to
be analyzed over time. For example, the
application uses the following time series:

• Average Lumens per Smart Bulb – Light
generation over time for the smart bulb

• Average Power per Smart Bulb – Power usage
over time for the smart bulb

• Duration On per Smart Bulb – The total
amount of time (in hours) that a light bulb has
been switched on up to the interval

• Switch Count per Smart Bulb – The number of
times a bulb is switched on or off

• Power Grid Status per Building – An external
factor indicating whether the local power grid
was functional over time at a specific building

To make the predictions actionable, the
assignment required the application to present
information to end-users through an interface
with two screens and a total of seven displays
reporting the number, location, risk score, and
status of light bulbs.

| 04© 2019 C3.ai | All Rights Reserved | 19_0415

C3.ai | Digital Acceleration

| 05© 2019 C3.ai | All Rights Reserved | 19_0415

The charts below illustrate the developers’ actual timeline with each approach. As clearly indicated, building
the application using AWS services took 3 developers 15 weeks, and a total effort of 200 full-time-equivalent
(FTE) days. By contrast, using the C3 AI Suite took just 1 developer a week for a total effort of only 5 FTE days.

Breakdown of the Development
Time and Effort

Figure 2. Timeline to implement the AWS Application.

Figure 3: Timeline to implement the C3 Application.

Infrastructure Configuration (S3, IAM,
CloudFormation)

Develope Data Model (RDS, Dynamo DB)

Integrate Data (S3, Kinesis, Lambda)

Develop Time Series, Metrics, and Machine
Learning (SageMaker, Lambda, DynamoDB)

Develop Analytics (Lambda, SNS)

Create APIs and UI (API Gateway, Angular)

AWS Build - 3 FTEs

weeks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Infrastructure Configuration

Develope Data Model

Integrate Data

Develop Time Series, Metrics,
and Machine Learning

Develop Analytics

Create APIs and UI

C3 Build - 1 FTE

weeks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The team concluded the C3 AI Suite reduced the
effort and accelerated the development process
by a factor of 40, while also reducing
development risks. “For less experienced teams,
this could easily increase to 50–100 times,” the
developers concluded.

“Further, C3.ai solves the challenges of security,
extensibility, and scalability—while streamlining
the skills needed in an enterprise development
team.”

This paper describes the comparison project and
the third-party developers’ findings, which are
summarized in the table below:

C3.ai | Digital Acceleration

Figure 1. The C3 AI Suite provided a 40x acceleration in developer productivity compared to
building the same application using only native AWS services, with 98% less code.

Infrastructure Configuration

Data Model

Data Integration

Analytics and Machine Learning

User Interface and Testing

Task

Total Effort (FTE Days)

Total Lines of Code Written

Days FTEs Total

20

10

5

20

32.5

3

2

3

2

2

60

20

15

40

65

Assemble on CSP C3 AI Suite

Days FTEs Total

0

0.75

0.75

2.5

1

0

1

1

1

1

0

0.75

0.75

2.5

1

200

83,000

5

1,450

| 06© 2019 C3.ai | All Rights Reserved | 19_0415

C3.ai | Digital Acceleration

1. Cohesive, Purpose-Built Product
Proven in the Most Demanding
Conditions

The C3 AI Suite has been refined, tested, and
proven over nearly a decade in the most
demanding industries and production
environments—electric utilities, manufacturing,
oil and gas, and defense—comprising
petabyte-scale data sets from thousands of
vastly disparate source systems, massive
volumes of high-frequency time series data from
millions of devices, and hundreds of thousands
of machine learning models. Unlike assembling
applications on general-purpose CSP platforms
such as AWS, the C3 AI Suite offers a
development environment that is optimized
specifically for AI and IoT application
development. All of the tools and services
provided by the C3 AI Suite work together
seamlessly. They are part of a cohesive product,
which is continuously maintained and updated
by C3.ai as a fully unified suite. As a result,
developers can learn to use the C3 AI Suite in a
very short period of time, typically one to two
weeks of training. There is no need to wade
through numerous pages of documentation, or
to master technical details of a dozen or more
underlying components as is the case with the
assemble-on-CSP approach.

2. Model-Driven Architecture

The C3 AI Suite is designed with a model-driven
architecture. This provides an abstraction layer
and semantics to represent the application,
which removes the complexity that developers
must otherwise handle when using the
assemble-on-CSP approach. A model-driven
architecture frees developers from worrying
about underlying technical details such as data
mapping, integrations, and computational
processes like stream processing, machine
learning pipeline management, security, and so
on. The model-driven architecture enables
developers to design and build applications by
using C3 Models. These are representations of
any concept or entity that is relevant to the
application and the interrelationships among
them. Anything can be represented as a
Model—even, for example, applications
including databases, natural language
processing engines, and image recognition
systems. All Models have RESTful interfaces.
This level of abstraction vastly simplifies and
speeds application development.

How the C3 AI Suite Accelerates
AI Application Development
The C3 AI Suite is able to dramatically accelerate AI application development for five key reasons:

| 07© 2019 C3.ai | All Rights Reserved | 19_0415

C3.ai | Digital Acceleration

3. Time Series Engine

Many AI applications involve very large amounts
of time series data. Working with time series data
can be exceptionally complex for developers.
Because the C3 AI Suite is designed with a
powerful time series engine at its core, it
removes that complexity by auto-managing
everything required to prepare and process time
series data. The C3 AI Suite treats all data as
time series data, automatically time-aligning and
normalizing data across all sources, significantly
reducing development complexity and effort.

4. AI-Centric Processing

The C3 AI Suite includes a data flow and
analytics engine specifically designed for
supporting AI application processes. This
relieves developers from having to write
extensive and often complex code for a range of
common AI requirements. For example, the C3
AI Suite understands data lineage to the features
of a machine learning model and therefore will
automatically update features, as necessary, only
when new data are available. This not only
simplifies the development effort but also results
in better application performance, scalability, and
resource and cost efficiency.

5. Bindings to Multiple Tools, Languages,
and Frameworks

The C3 AI Suite is open and designed with
prebuilt bindings to many popular tools,
languages, and frameworks, including Python,
Jupyter, R, Eclipse, JavaScript, Angular, and
React, among others. This allows developers
and data scientists to use their preferred tools,
languages, and frameworks on a common
platform, thereby speeding application
development.

| 08© 2019 C3.ai | All Rights Reserved | 19_0415

C3.ai | Digital Acceleration

Multi-Cloud and Polyglot
Cloud Support

Conclusion: A Faster Choice

While AWS was the CSP used in this
comparison project, the results and conclusions
of this report would apply to any other
comparison, whether Azure, Google, or IBM.
Similar to AWS, every CSP provides a large
general-purpose collection of microservices.
Using the assemble-on-CSP approach with any
of those platforms, development teams would
face the same complexities.

C3.ai asked the third-party consulting firm
commissioned for this project to also provide a
quote to build the same application on Google
Cloud and on Microsoft Azure. The quotes were
virtually identical to the AWS project effort in
terms of time, resources, coding effort, and cost.

In contrast to the assemble-on-CSP approach,
the C3 AI Suite provides multi-cloud support: an
application built using the C3 AI Suite can use
any CSP platform as infrastructure with little or
no modification. Moreover, the C3 AI Suite also
provides polyglot cloud support—i.e., the ability
to use microservices from different cloud
platform providers in an application. This
capability not only allows application portability
from one cloud vendor to another, but also
affords the capability to run applications on
multiple clouds simultaneously. As CSP vendors
continue to innovate, an organization can
choose best-of-breed microservices across
multiple vendors to optimize the capability of its
AI applications. When a new and more powerful
microservice becomes available, it can easily be
plugged in to replace the old microservice. The
application keeps running, now with greater
performance, precision, and economic benefit.

| 09© 2019 C3.ai | All Rights Reserved | 19_0415

As demonstrated by this third-party side-by-side comparison, the C3 AI Suite, with its model-driven
architecture, accelerates AI application development by 40x or greater over the assemble-on-CSP
approach. With the C3 AI Suite, organizations can achieve faster time-to-value with significantly less
cost and complexity.

C3.ai | Digital Acceleration

Appendix A: Architecture
Comparison

Assemble on AWS
The architecture for the application assembled on AWS, as depicted in Figure 4, made heavy use of
AWS managed services, including AWS Lambda for serverless processing, Amazon Kinesis for data
streaming, Amazon S3 for storing raw data, Amazon API Gateway for RESTful services, and Amazon
SageMaker for machine learning training and inference. In addition, Amazon’s Relational Database
Service (RDS) and Amazon DynamoDB, a NoSQL distributed key-value store database, were utilized for
persistence.

Figure 4: Architecture to build the Light Bulb Predictive Maintenance on AWS.

| 10© 2019 C3.ai | All Rights Reserved | 19_0415

VPC

Google Maps

C3.ai | Digital Acceleration

C3 AI Suite Build
Developing the same application with the C3 AI Suite was much simpler. Learning the C3 AI Suite and
the use of C3 Models required just eight days of training.

The third-party developer team summarized
its key findings from the comparison project
in its comments below.

Time and Cost of Development

The C3 AI Suite substantially accelerates
development, allowing customers to derive
economic value from AI applications faster
than by building the necessary platform
components themselves.

Risk Mitigation

Even organizations with well-funded IT
departments and highly skilled developers
face substantial risks building, deploying,
and maintaining new applications. This risk
increases many-fold when the scope grows
beyond one simple application. The C3 AI
Suite reduces exposure to the array of risks
that face a company developing custom,
enterprise-scale software.

Complexity

Stitching together core infrastructure,
enterprise software, platform services, data
science services, and UI components into a
production-scale application is a task of
enormous complexity. Companies that
attempt to construct custom AI platforms
using building blocks risk pouring time and
resources into projects that fail to reach
production or deliver on their value
proposition. The C3 AI Suite, by abstracting

away the underlying infrastructure and
presenting all data and services as accessible,
manipulatable “Models”, minimizes this risk.

Extensibility

Companies that overcome the complexity of
building a single AI application face the risk that
their work will not be extensible—the data model
cannot be extended to serve a second
application, or their code is specific to
infrastructure components that have become
obsolete. Applications built using the C3 AI Suite
are tied to metadata rather than to the underlying
data and storage infrastructure. Because of this
decoupling, the applications are therefore fully
extensible to support new data sources,
infrastructure, algorithms, and platform services.

Security

Getting a working application is complex
enough. Encrypting all data in transit and at rest;
limiting access to data at the row and user level;
and guaranteeing backup, failover, and
redundancy add new layers of complexity and
represent major risks for applications that
expose the enterprise’s most sensitive data. The
C3 AI Suite mitigates these risks by providing
accredited, comprehensive security measures as
part of its services.

Maintenance and Support

AI applications built from scratch are brittle,
breaking when data sources, use cases, and
support staff change. Companies are forced to
divert resources to maintenance, which dilutes
the value that AI applications deliver, limits new
development, and increases the probability of
abandoning applications altogether. C3.ai
mitigates this risk in two ways: The C3 AI Suite
requires significantly less maintenance than a
bespoke solution, and C3.ai provides support
resources and training as part of its solution.

Scalability

Infrastructure scalability is crucial to enable
applications built on small data sets to scale to
the enterprise. AWS enables scalability typically
through a manual process to request, provision,
and integrate additional compute and storage
resources. The C3 AI Suite employs a modular
scale-out architecture that automatically
requests, provisions, and releases computing
resources based on need and makes it simple to
add more storage and other resources.
Application scalability is also crucial to enable
organizations to add more data, new sources of
data, new transforms of data coming from
different parts of the organization, or new
application logic to extend previously built use
cases. Native AWS development would require
structural code changes and rewriting the entire
application to incorporate these changes. C3.ai
mitigates this risk via the C3 AI Suite’s
metadata-based abstraction.

Resource Capabilities

AWS development requires a very broad skill set
in an organization’s developers. At the most
basic level, all developers need an
understanding of AWS development principles,
while specific team members might require a
range of skills—from networking and Linux
server configuration to the specific details of the
various managed services—unique to each CSP,
that come with their own methods of utilization.
Additionally, organizations need to make a
significant resource investment in DevOps to
ensure that what they are building on AWS can
mature in a safe and scalable way. For reference,
AWS recommends a year of experience working
in the AWS platform prior to securing a basic
AWS certification. For C3.ai, a foundation in
object-oriented concepts such as inheritance
and static typing as well as exposure to the
domain-specific syntax are the only critical skills
to understanding the development approach. A
typical C3 AI Suite developer receives eight days
of training and is usually proficient in three
months depending on skill level and prior
experience.

Figure 5. Architecture to build the Light Bulb Predictive Maintenance on the C3 AI Suite

SmartBulbs

PowerGridStatus

Fixture

SmartBulbEvent

SmartBulbFixture

SmartBulbMeasurement

SmartBulbWeather

C3 Model Driven Architecture

C
3

D
at

a
In

te
gr

at
or

™

AI

AI - Machine Learning

Data Virtualization

Continuous Data Processing

AI Suite Management Services

G
ov

er
na

nc
e

C3 Integrated Development Studio

Vi
su

al
iz

at
io

ns
 v

ia
 T

oo
ls

Infrastructure as a Service

| 11© 2019 C3.ai | All Rights Reserved | 19_0415

Appendix A: Architecture
Comparison

C3.ai | Digital Acceleration

The third-party developer team summarized
its key findings from the comparison project
in its comments below.

Time and Cost of Development

The C3 AI Suite substantially accelerates
development, allowing customers to derive
economic value from AI applications faster
than by building the necessary platform
components themselves.

Risk Mitigation

Even organizations with well-funded IT
departments and highly skilled developers
face substantial risks building, deploying,
and maintaining new applications. This risk
increases many-fold when the scope grows
beyond one simple application. The C3 AI
Suite reduces exposure to the array of risks
that face a company developing custom,
enterprise-scale software.

Complexity

Stitching together core infrastructure,
enterprise software, platform services, data
science services, and UI components into a
production-scale application is a task of
enormous complexity. Companies that
attempt to construct custom AI platforms
using building blocks risk pouring time and
resources into projects that fail to reach
production or deliver on their value
proposition. The C3 AI Suite, by abstracting

away the underlying infrastructure and
presenting all data and services as accessible,
manipulatable “Models”, minimizes this risk.

Extensibility

Companies that overcome the complexity of
building a single AI application face the risk that
their work will not be extensible—the data model
cannot be extended to serve a second
application, or their code is specific to
infrastructure components that have become
obsolete. Applications built using the C3 AI Suite
are tied to metadata rather than to the underlying
data and storage infrastructure. Because of this
decoupling, the applications are therefore fully
extensible to support new data sources,
infrastructure, algorithms, and platform services.

Security

Getting a working application is complex
enough. Encrypting all data in transit and at rest;
limiting access to data at the row and user level;
and guaranteeing backup, failover, and
redundancy add new layers of complexity and
represent major risks for applications that
expose the enterprise’s most sensitive data. The
C3 AI Suite mitigates these risks by providing
accredited, comprehensive security measures as
part of its services.

Appendix B: Third-Party
Developer Team’s Key Findings

Maintenance and Support

AI applications built from scratch are brittle,
breaking when data sources, use cases, and
support staff change. Companies are forced to
divert resources to maintenance, which dilutes
the value that AI applications deliver, limits new
development, and increases the probability of
abandoning applications altogether. C3.ai
mitigates this risk in two ways: The C3 AI Suite
requires significantly less maintenance than a
bespoke solution, and C3.ai provides support
resources and training as part of its solution.

Scalability

Infrastructure scalability is crucial to enable
applications built on small data sets to scale to
the enterprise. AWS enables scalability typically
through a manual process to request, provision,
and integrate additional compute and storage
resources. The C3 AI Suite employs a modular
scale-out architecture that automatically
requests, provisions, and releases computing
resources based on need and makes it simple to
add more storage and other resources.
Application scalability is also crucial to enable
organizations to add more data, new sources of
data, new transforms of data coming from
different parts of the organization, or new
application logic to extend previously built use
cases. Native AWS development would require
structural code changes and rewriting the entire
application to incorporate these changes. C3.ai
mitigates this risk via the C3 AI Suite’s
metadata-based abstraction.

Resource Capabilities

AWS development requires a very broad skill set
in an organization’s developers. At the most
basic level, all developers need an
understanding of AWS development principles,
while specific team members might require a
range of skills—from networking and Linux
server configuration to the specific details of the
various managed services—unique to each CSP,
that come with their own methods of utilization.
Additionally, organizations need to make a
significant resource investment in DevOps to
ensure that what they are building on AWS can
mature in a safe and scalable way. For reference,
AWS recommends a year of experience working
in the AWS platform prior to securing a basic
AWS certification. For C3.ai, a foundation in
object-oriented concepts such as inheritance
and static typing as well as exposure to the
domain-specific syntax are the only critical skills
to understanding the development approach. A
typical C3 AI Suite developer receives eight days
of training and is usually proficient in three
months depending on skill level and prior
experience.

| 12© 2019 C3.ai | All Rights Reserved | 19_0415

C3.ai | Digital Acceleration

The third-party developer team summarized
its key findings from the comparison project
in its comments below.

Time and Cost of Development

The C3 AI Suite substantially accelerates
development, allowing customers to derive
economic value from AI applications faster
than by building the necessary platform
components themselves.

Risk Mitigation

Even organizations with well-funded IT
departments and highly skilled developers
face substantial risks building, deploying,
and maintaining new applications. This risk
increases many-fold when the scope grows
beyond one simple application. The C3 AI
Suite reduces exposure to the array of risks
that face a company developing custom,
enterprise-scale software.

Complexity

Stitching together core infrastructure,
enterprise software, platform services, data
science services, and UI components into a
production-scale application is a task of
enormous complexity. Companies that
attempt to construct custom AI platforms
using building blocks risk pouring time and
resources into projects that fail to reach
production or deliver on their value
proposition. The C3 AI Suite, by abstracting

away the underlying infrastructure and
presenting all data and services as accessible,
manipulatable “Models”, minimizes this risk.

Extensibility

Companies that overcome the complexity of
building a single AI application face the risk that
their work will not be extensible—the data model
cannot be extended to serve a second
application, or their code is specific to
infrastructure components that have become
obsolete. Applications built using the C3 AI Suite
are tied to metadata rather than to the underlying
data and storage infrastructure. Because of this
decoupling, the applications are therefore fully
extensible to support new data sources,
infrastructure, algorithms, and platform services.

Security

Getting a working application is complex
enough. Encrypting all data in transit and at rest;
limiting access to data at the row and user level;
and guaranteeing backup, failover, and
redundancy add new layers of complexity and
represent major risks for applications that
expose the enterprise’s most sensitive data. The
C3 AI Suite mitigates these risks by providing
accredited, comprehensive security measures as
part of its services.

Maintenance and Support

AI applications built from scratch are brittle,
breaking when data sources, use cases, and
support staff change. Companies are forced to
divert resources to maintenance, which dilutes
the value that AI applications deliver, limits new
development, and increases the probability of
abandoning applications altogether. C3.ai
mitigates this risk in two ways: The C3 AI Suite
requires significantly less maintenance than a
bespoke solution, and C3.ai provides support
resources and training as part of its solution.

Scalability

Infrastructure scalability is crucial to enable
applications built on small data sets to scale to
the enterprise. AWS enables scalability typically
through a manual process to request, provision,
and integrate additional compute and storage
resources. The C3 AI Suite employs a modular
scale-out architecture that automatically
requests, provisions, and releases computing
resources based on need and makes it simple to
add more storage and other resources.
Application scalability is also crucial to enable
organizations to add more data, new sources of
data, new transforms of data coming from
different parts of the organization, or new
application logic to extend previously built use
cases. Native AWS development would require
structural code changes and rewriting the entire
application to incorporate these changes. C3.ai
mitigates this risk via the C3 AI Suite’s
metadata-based abstraction.

Resource Capabilities

AWS development requires a very broad skill set
in an organization’s developers. At the most
basic level, all developers need an
understanding of AWS development principles,
while specific team members might require a
range of skills—from networking and Linux
server configuration to the specific details of the
various managed services—unique to each CSP,
that come with their own methods of utilization.
Additionally, organizations need to make a
significant resource investment in DevOps to
ensure that what they are building on AWS can
mature in a safe and scalable way. For reference,
AWS recommends a year of experience working
in the AWS platform prior to securing a basic
AWS certification. For C3.ai, a foundation in
object-oriented concepts such as inheritance
and static typing as well as exposure to the
domain-specific syntax are the only critical skills
to understanding the development approach. A
typical C3 AI Suite developer receives eight days
of training and is usually proficient in three
months depending on skill level and prior
experience.

| 13© 2019 C3.ai | All Rights Reserved | 19_0415

The third-party developer team summarized
its key findings from the comparison project
in its comments below.

Time and Cost of Development

The C3 AI Suite substantially accelerates
development, allowing customers to derive
economic value from AI applications faster
than by building the necessary platform
components themselves.

Risk Mitigation

Even organizations with well-funded IT
departments and highly skilled developers
face substantial risks building, deploying,
and maintaining new applications. This risk
increases many-fold when the scope grows
beyond one simple application. The C3 AI
Suite reduces exposure to the array of risks
that face a company developing custom,
enterprise-scale software.

Complexity

Stitching together core infrastructure,
enterprise software, platform services, data
science services, and UI components into a
production-scale application is a task of
enormous complexity. Companies that
attempt to construct custom AI platforms
using building blocks risk pouring time and
resources into projects that fail to reach
production or deliver on their value
proposition. The C3 AI Suite, by abstracting

away the underlying infrastructure and
presenting all data and services as accessible,
manipulatable “Models”, minimizes this risk.

Extensibility

Companies that overcome the complexity of
building a single AI application face the risk that
their work will not be extensible—the data model
cannot be extended to serve a second
application, or their code is specific to
infrastructure components that have become
obsolete. Applications built using the C3 AI Suite
are tied to metadata rather than to the underlying
data and storage infrastructure. Because of this
decoupling, the applications are therefore fully
extensible to support new data sources,
infrastructure, algorithms, and platform services.

Security

Getting a working application is complex
enough. Encrypting all data in transit and at rest;
limiting access to data at the row and user level;
and guaranteeing backup, failover, and
redundancy add new layers of complexity and
represent major risks for applications that
expose the enterprise’s most sensitive data. The
C3 AI Suite mitigates these risks by providing
accredited, comprehensive security measures as
part of its services.

Maintenance and Support

AI applications built from scratch are brittle,
breaking when data sources, use cases, and
support staff change. Companies are forced to
divert resources to maintenance, which dilutes
the value that AI applications deliver, limits new
development, and increases the probability of
abandoning applications altogether. C3.ai
mitigates this risk in two ways: The C3 AI Suite
requires significantly less maintenance than a
bespoke solution, and C3.ai provides support
resources and training as part of its solution.

Scalability

Infrastructure scalability is crucial to enable
applications built on small data sets to scale to
the enterprise. AWS enables scalability typically
through a manual process to request, provision,
and integrate additional compute and storage
resources. The C3 AI Suite employs a modular
scale-out architecture that automatically
requests, provisions, and releases computing
resources based on need and makes it simple to
add more storage and other resources.
Application scalability is also crucial to enable
organizations to add more data, new sources of
data, new transforms of data coming from
different parts of the organization, or new
application logic to extend previously built use
cases. Native AWS development would require
structural code changes and rewriting the entire
application to incorporate these changes. C3.ai
mitigates this risk via the C3 AI Suite’s
metadata-based abstraction.

Resource Capabilities

AWS development requires a very broad skill set
in an organization’s developers. At the most
basic level, all developers need an
understanding of AWS development principles,
while specific team members might require a
range of skills—from networking and Linux
server configuration to the specific details of the
various managed services—unique to each CSP,
that come with their own methods of utilization.
Additionally, organizations need to make a
significant resource investment in DevOps to
ensure that what they are building on AWS can
mature in a safe and scalable way. For reference,
AWS recommends a year of experience working
in the AWS platform prior to securing a basic
AWS certification. For C3.ai, a foundation in
object-oriented concepts such as inheritance
and static typing as well as exposure to the
domain-specific syntax are the only critical skills
to understanding the development approach. A
typical C3 AI Suite developer receives eight days
of training and is usually proficient in three
months depending on skill level and prior
experience.

C3.ai | Digital Acceleration

Appendix C: Third-Party
Developer Team’s Commentary
on the Development Process

To further detail the comparison between using the assemble-on-CSP approach and the C3 AI Suite, the
developer team described their experience at each stage of the process with both methods. Below, the
developer team’s commentary is presented side-by-side for each of the five major task areas. The
developers’ commentary provides numerous insights explaining the significantly greater complexity in
using the assemble-on-CSP approach compared to the relative ease of using the C3 AI Suite.

Infrastructure
Configuration

Our work began with creating a new AWS
account, configuring basic networking, and
establishing access control and security policy
permissions. As we began development, the
data lake and necessary infrastructure for a data
processing pipeline was created. The data lake
consisted of Amazon S3, DynamoDB, and RDS.
The processing pipeline was a series of AWS
Lambda functions that were linked together by
Amazon Kinesis Streams, allowing data to flow
through each stage of ingestion, modeling,
enhancement, and transformation. These
resources were managed using Amazon’s
infrastructure-as-code service, AWS
CloudFormation. The easiest component of the
architecture to implement and deploy was the S3
data lake and its associated data stores, RDS
and DynamoDB. This was one of seven
CloudFormation templates, each growing in
complexity as we built up the architecture layers.
Each CloudFormation template ranged from
hundreds to thousands of lines of custom code.

`

Task AWS Application C3 Application

| 14© 2019 C3.ai | All Rights Reserved | 19_0415

The C3 AI Suite does not require any
infrastructure to be configured or maintained.
Deploying a new instance of the C3 AI Suite
takes four hours. Deploying a new tenant
within an existing instance takes
approximately three minutes.

C3.ai | Digital Acceleration

Infrastructure
Configuration
(continued)

Deployment was a manual process that involved
uploading the templates into CloudFormation
and then running them to create or update the
infrastructure. The AWS documentation
reasonably described which resource
parameters are necessary for a specific template
resource, and the AWS console provides specific
feedback if an attempted template upload has
errors or requires refactoring. While we were able
to understand and respond to these issues
rapidly given our experience with AWS, our
assessment is that a typical organization would
need to build very robust DevOps pipelines and
devote significant resourcing to ensure changes
are promptly and definitively pushed into the
account.

An enterprise architecture team with less
experience on AWS would reasonably take at
least twice as long as our experienced
developer team. It is notable that infrastructure
configuration is a continuous process throughout
the development life cycle and requires ongoing
maintenance post-deployment. Each AWS
service we utilized has unique networking and
permissions configurations that must be
tweaked and debugged.

Task AWS Application C3 Application

Data Model To optimize for scalability, extensibility, and
usability, we designed the AWS Application to
leverage two databases. We used Amazon RDS,
a fully managed relational database service, to
store static structured data—bulb type, wattage,
location, manufacturer, etc. To create our
relational data model, custom SQL was
hardcoded to define each table in our database.
This manual process provided the necessary
structure to easily store, organize, and query
data. We used Amazon DynamoDB, a fully
managed NoSQL distributed key-value store
database, to store dynamic data—e.g., bulb
telemetry. Unlike relational databases, NoSQL
databases do not require a predefined data
model.

We began building the C3 Application by creating
C3 Models for use in our application. C3 Models
are representations in code of any
business-relevant objects—for instance,
real-world entities that make up a business—in
this case, light bulbs, buildings, facilities,
manufacturers, etc. Each Model contains the
metadata that define its relevant datastores
(distributed file system, relational, NoSQL) and its
relationships to other Models in the data model
(e.g., one facility has 10 light bulbs from a single
manufacturer).

The use of C3 Models allows individuals with
different functions and specializations—e.g.,
developers, data scientists, and business
analysts—to work on a shared abstraction
layer without having to configure or maintain
the underlying data federation and storage
models, dependencies, or infrastructure.

Without two databases, we would be limited in
our ability to filter on data, explore data, and
evaluate the timed interval relationships between
data objects. It would also couple the scaling of
both data sources to a single configuration
setup. By separating the two storage services,
we can scale DynamoDB independently of RDS
for both improved performance and cost savings
compared to running a single, larger, and more
expensive RDS instance. A two-database
architecture was in sync with our
microservice-based approach.

An enterprise architecture team with less
experience on AWS and internal constraints
on database structure would reasonably take
twice as long as our experienced team.
Further—and this is extremely crucial given
our experience—changing or extending the
data model would require the data model to
be entirely refactored/rebuilt.

| 15© 2019 C3.ai | All Rights Reserved | 19_0415

C3.ai | Digital Acceleration

To optimize for scalability, extensibility, and
usability, we designed the AWS Application to
leverage two databases. We used Amazon RDS,
a fully managed relational database service, to
store static structured data—bulb type, wattage,
location, manufacturer, etc. To create our
relational data model, custom SQL was
hardcoded to define each table in our database.
This manual process provided the necessary
structure to easily store, organize, and query
data. We used Amazon DynamoDB, a fully
managed NoSQL distributed key-value store
database, to store dynamic data—e.g., bulb
telemetry. Unlike relational databases, NoSQL
databases do not require a predefined data
model.

We began building the C3 Application by creating
C3 Models for use in our application. C3 Models
are representations in code of any
business-relevant objects—for instance,
real-world entities that make up a business—in
this case, light bulbs, buildings, facilities,
manufacturers, etc. Each Model contains the
metadata that define its relevant datastores
(distributed file system, relational, NoSQL) and its
relationships to other Models in the data model
(e.g., one facility has 10 light bulbs from a single
manufacturer).

The use of C3 Models allows individuals with
different functions and specializations—e.g.,
developers, data scientists, and business
analysts—to work on a shared abstraction
layer without having to configure or maintain
the underlying data federation and storage
models, dependencies, or infrastructure.

Data Model
(continued)

Without two databases, we would be limited in
our ability to filter on data, explore data, and
evaluate the timed interval relationships between
data objects. It would also couple the scaling of
both data sources to a single configuration
setup. By separating the two storage services,
we can scale DynamoDB independently of RDS
for both improved performance and cost savings
compared to running a single, larger, and more
expensive RDS instance. A two-database
architecture was in sync with our
microservice-based approach.

An enterprise architecture team with less
experience on AWS and internal constraints
on database structure would reasonably take
twice as long as our experienced team.
Further—and this is extremely crucial given
our experience—changing or extending the
data model would require the data model to
be entirely refactored/rebuilt.

Task AWS Application C3 Application

Data Integration Our initial data integration effort involved
manually loading the raw CSV data via MySQL
tooling. If the data were in a different format it
would have likely involved writing either custom
parsers, or manually converting the data into a
more usable format combined with potentially
writing the raw SQL commands to insert this
data. Furthermore, this process was entirely
manual at the outset of the project to “seed” the
initial data with no process in place for the
ongoing ingestion of new data. While this would
not be a difficult process to engineer, it would
require more development time along with a
process to be put in place to allow for more
fixtures, light bulbs, apartments, etc. to be
introduced into the system for future use.

An enterprise architecture team with less
experience on AWS would reasonably take 50
percent more time than our team.

We used the C3 AI Suite’s native data
integration capabilities to integrate, index, and
normalize the light bulb data. Prior to
integrating data, we created six canonical
Models for each of the data sources. The C3
AI Suite includes native functionality to import
data from any source and map all fields to C3
Models for access by data scientists and
developers. While we worked with CSV files,
the C3 AI Suite includes prebuilt connectors
to commonly used relational databases,
NoSQL databases, and distributed file
systems.

| 16© 2019 C3.ai | All Rights Reserved | 19_0415

C3.ai | Digital Acceleration

Machine
Learning and
Analytics

Once we integrated the raw data, we began
preparing it for our machine learning process. To
create our time series metrics/machine learning
features, we wrote custom logic in NodeJS and
used Amazon Lambda’s serverless computing
service to execute at run-time. Lambda allowed
us to easily deploy our custom logic and
orchestrate it with AWS streaming service
Kinesis, with less overhead and infrastructure
configuration. However, our team encountered
difficulty configuring the networking for the
various AWS services we utilized. While a
serverless approach typically removes the need
for networking considerations, using Amazon
RDS necessitated hands-on networking
configuration. Our Lambda functions had to be
placed into subnets within our VPC, which then
required establishing VPC Endpoints to connect
out to the AWS managed services such as AWS
Key Management Service, DynamoDB, and
SageMaker. In addition, we had to configure a
new network address translation (NAT) gateway
to facilitate our enhancement function to make
calls over the internet to the weather endpoint
provided by C3.ai. These changes required more
manual configuration of the networking layer and
could prove to be problematic for teams without
a strong knowledge of AWS networking
concepts. Additionally, this led to extra work that
was not estimated and required unplanned
developer time.

Another key difficulty was transforming our time
series metrics into the proper format for Amazon
SageMaker. Rectifying this required a trial and
error process and relying on colleagues with
extensive experience working with SageMaker
and its DeepAR algorithm. After revising and
refactoring our approach for building the raw
model input, we were able to successfully create
a process for building machine learning models
and for creating a request object that integrated
with SageMaker.

We used our C3 Models to generate 13
metrics, which fetch Model data to produce a
normalized time series. Metrics serve as
features in machine learning algorithms and
can be incorporated into application logic. We
also wrote some methods for the SmartBulb
Model, which allow for more complex
calculations on the data using JavaScript or
Python.

We created risk-of-failure scores for the
Application’s light bulbs using Jupyter
Notebook and Python, both supported
natively by the C3 AI Suite. Having the full
functionality of the C3 AI Suite and C3 Models
natively integrated with Jupyter Notebook
provides easy access for data scientists to
leverage tools that are familiar and effective.
We trained a classification model that
regressed the metrics SwitchCountWeek and
DurationOnInHours against the dependent
variable WillFailNextMonth to calculate the
probability of failure in the next 30 days. We
stored this rolling risk score as its own time
series metric RiskScore. Machine learning
algorithms in the C3 AI Suite operate on all
existing data, create new data that can be
automatically attached to a C3 Model for
future processing, and automatically update
training and make predictions on the latest
available data. The area under the receiver
operating characteristic curve was .990.

We used the C3 AI Suite’s native
asynchronous processing engine to create
data flow events (DFEs). Using DFEs, we
created three analytics that automatically
generate operator alerts when certain
operating thresholds were met/exceeded.
These alerts could be routed via email or SMS
messages.

Task AWS Application C3 Application

This effort involved complex custom code, and
changing the algorithm required significant
rework of the preparation process. The lack of
usability is one reason an iterative approach
needed to be taken until the process fully
integrated with SageMaker DeepAR. Once the
model and request object were successfully
created and integrated, it was easy to get
predictions from SageMaker. However, additional
code was required to join the predictions into the
data model and store in Amazon RDS.

Precision relates to the proportion of light bulb
failures that were correctly predicted. Recall is
the proportion of actual high-risk bulbs that were
identified correctly. The area under the receiver
operating characteristic curve was .795.

An enterprise architecture team with less
experience on AWS, especially with AWS
networking concepts, would reasonably take
twice as long as our team did.

A separate process was created to evaluate and
save metrics based on specific rules and use
cases. Once a light bulb measurement had been
ingested and transformed, an analytics service
written in Lambda was used to check if any rules
were satisfied. If so, a new record was saved into
RDS to mark the analytic as triggered, and a
message was sent to Amazon Simple
Notification Service. This allows for emails, text
messages, or other notifications to be triggered
so that further action can be taken as a
result—e.g., “Inspect this light bulb.” Expanding
the notifications simply involves writing further
use cases and incorporating them into the
analytics service.

A normal enterprise architecture team would
reasonably take 50 percent more time than
our team did.

| 17© 2019 C3.ai | All Rights Reserved | 19_0415

Once we integrated the raw data, we began
preparing it for our machine learning process. To
create our time series metrics/machine learning
features, we wrote custom logic in NodeJS and
used Amazon Lambda’s serverless computing
service to execute at run-time. Lambda allowed
us to easily deploy our custom logic and
orchestrate it with AWS streaming service
Kinesis, with less overhead and infrastructure
configuration. However, our team encountered
difficulty configuring the networking for the
various AWS services we utilized. While a
serverless approach typically removes the need
for networking considerations, using Amazon
RDS necessitated hands-on networking
configuration. Our Lambda functions had to be
placed into subnets within our VPC, which then
required establishing VPC Endpoints to connect
out to the AWS managed services such as AWS
Key Management Service, DynamoDB, and
SageMaker. In addition, we had to configure a
new network address translation (NAT) gateway
to facilitate our enhancement function to make
calls over the internet to the weather endpoint
provided by C3.ai. These changes required more
manual configuration of the networking layer and
could prove to be problematic for teams without
a strong knowledge of AWS networking
concepts. Additionally, this led to extra work that
was not estimated and required unplanned
developer time.

Another key difficulty was transforming our time
series metrics into the proper format for Amazon
SageMaker. Rectifying this required a trial and
error process and relying on colleagues with
extensive experience working with SageMaker
and its DeepAR algorithm. After revising and
refactoring our approach for building the raw
model input, we were able to successfully create
a process for building machine learning models
and for creating a request object that integrated
with SageMaker.

Machine
Learning and
Analytics
(continued)

This effort involved complex custom code, and
changing the algorithm required significant
rework of the preparation process. The lack of
usability is one reason an iterative approach
needed to be taken until the process fully
integrated with SageMaker DeepAR. Once the
model and request object were successfully
created and integrated, it was easy to get
predictions from SageMaker. However, additional
code was required to join the predictions into the
data model and store in Amazon RDS.

Precision relates to the proportion of light bulb
failures that were correctly predicted. Recall is
the proportion of actual high-risk bulbs that were
identified correctly. The area under the receiver
operating characteristic curve was .795.

An enterprise architecture team with less
experience on AWS, especially with AWS
networking concepts, would reasonably take
twice as long as our team did.

A separate process was created to evaluate and
save metrics based on specific rules and use
cases. Once a light bulb measurement had been
ingested and transformed, an analytics service
written in Lambda was used to check if any rules
were satisfied. If so, a new record was saved into
RDS to mark the analytic as triggered, and a
message was sent to Amazon Simple
Notification Service. This allows for emails, text
messages, or other notifications to be triggered
so that further action can be taken as a
result—e.g., “Inspect this light bulb.” Expanding
the notifications simply involves writing further
use cases and incorporating them into the
analytics service.

A normal enterprise architecture team would
reasonably take 50 percent more time than
our team did.

Task AWS Application C3 Application

C3.ai | Digital Acceleration

| 18© 2019 C3.ai | All Rights Reserved | 19_0415

User Interface
and Testing

Building the Application’s UI required exposing
RESTful APIs that served the results of our time
series metrics. To accomplish this, we utilized
Amazon API Gateway with Lambda functions
written in NodeJS. The API Gateway
configuration was completed in CloudFormation
using an OpenAPI specification combined with
specific configuration elements for the API
Gateway. Configuring cross-origin resource
sharing (CORS), which enables the client
application to call the APIs directly from the
browser, in the CloudFormation templates was
challenging. We reverse engineered the methods
and headers that the API Gateway console
automatically adds when enabling CORS and
figured out the corresponding CloudFormation
syntax. We spent many iterations to successfully
set up and test CORS. The Light Bulb API
accessed RDS and DynamoDB, requiring
different data access methods to be written for
each database and different sets of permissions
that needed to be setup and configured in the
CloudFormation templates. It would be ideal to
establish an architecture that abstracts the data
access methods; however, it would require
development time to create and maintain the
methods and configuration to access those data
stores. The API was secured with an API key,
which also required moderately complex
CloudFormation configuration.

The UI components were built using Angular 6
and were hosted with S3 and Amazon
CloudFront. TypeScript, SASS, RxJS, Angular
Material, and the Angular FlexLayout were the
primary front-end technologies utilized for the
Angular components. The components can be
easily added and removed without affecting the
other components on the page. We spent one
FTE day to ensure that duplicate API calls would
not be made for a component if another
component already retrieved the data. The
components share a service that provides the
API results as a RxJS observable. The
observable provides the API data for the

We incorporated several of our C3 Models
and metrics in a web interface built using
custom C3 HTML and UI templates. We used
these to create the dashboard of the
Application. The dashboard UI template was
one JSON styled file that contained the code
for the components of the dashboard such as
a status map, a filter, a histogram, and a table.
Our UI also included continuously and
automatically updated predictive risk scores
about the likelihood of smart bulb failures
(incorporated using the RiskScore metric).
Finally, we created a few simple potential roles
that would be used by future users of the
Application. These roles consisted of
restricting users to permissions for specific
use cases pertinent to the user.

Task AWS Application C3 Application

components and will refresh the components
that are subscribed to it when new data is
generated. This allows the components to
efficiently retrieve data refreshed without a
postback for actions such as filtering. We used
client-side filtering, sorting, and paging for the
detail tables, but these actions will need to be
done on the server side if the quantity of data for
the component becomes too large. Server-side
filtering, sorting, and paging would add one
week to the development effort, plus two to three
days for unit testing.

Hosting the front-end application on S3 alone,
while possible, does not provide enough granular
control over permissions and routing. We used
CloudFront as an entry point to S3 and restricted
access to only allow CloudFront access to the
S3 bucket via an Origin Access Identity. Through
CloudFront, we can enable client-side routing
functionality and manage the access, custom
error messages, and geographic distribution. All
the S3, CloudFront, and Origin Access Identity
setup was done through a CloudFormation
template.

An enterprise architecture team with less
experience would reasonably take 20 percent
more time to complete these tasks.

C3.ai | Digital Acceleration

| 19© 2019 C3.ai | All Rights Reserved | 19_0415

Building the Application’s UI required exposing
RESTful APIs that served the results of our time
series metrics. To accomplish this, we utilized
Amazon API Gateway with Lambda functions
written in NodeJS. The API Gateway
configuration was completed in CloudFormation
using an OpenAPI specification combined with
specific configuration elements for the API
Gateway. Configuring cross-origin resource
sharing (CORS), which enables the client
application to call the APIs directly from the
browser, in the CloudFormation templates was
challenging. We reverse engineered the methods
and headers that the API Gateway console
automatically adds when enabling CORS and
figured out the corresponding CloudFormation
syntax. We spent many iterations to successfully
set up and test CORS. The Light Bulb API
accessed RDS and DynamoDB, requiring
different data access methods to be written for
each database and different sets of permissions
that needed to be setup and configured in the
CloudFormation templates. It would be ideal to
establish an architecture that abstracts the data
access methods; however, it would require
development time to create and maintain the
methods and configuration to access those data
stores. The API was secured with an API key,
which also required moderately complex
CloudFormation configuration.

The UI components were built using Angular 6
and were hosted with S3 and Amazon
CloudFront. TypeScript, SASS, RxJS, Angular
Material, and the Angular FlexLayout were the
primary front-end technologies utilized for the
Angular components. The components can be
easily added and removed without affecting the
other components on the page. We spent one
FTE day to ensure that duplicate API calls would
not be made for a component if another
component already retrieved the data. The
components share a service that provides the
API results as a RxJS observable. The
observable provides the API data for the

components and will refresh the components
that are subscribed to it when new data is
generated. This allows the components to
efficiently retrieve data refreshed without a
postback for actions such as filtering. We used
client-side filtering, sorting, and paging for the
detail tables, but these actions will need to be
done on the server side if the quantity of data for
the component becomes too large. Server-side
filtering, sorting, and paging would add one
week to the development effort, plus two to three
days for unit testing.

Hosting the front-end application on S3 alone,
while possible, does not provide enough granular
control over permissions and routing. We used
CloudFront as an entry point to S3 and restricted
access to only allow CloudFront access to the
S3 bucket via an Origin Access Identity. Through
CloudFront, we can enable client-side routing
functionality and manage the access, custom
error messages, and geographic distribution. All
the S3, CloudFront, and Origin Access Identity
setup was done through a CloudFormation
template.

An enterprise architecture team with less
experience would reasonably take 20 percent
more time to complete these tasks.

User Interface
and Testing
(continued)

Task AWS Application C3 Application

C3.ai | Digital Acceleration

| 20© 2019 C3.ai | All Rights Reserved | 19_0415

