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Note from C3.ai

C3.ai commissioned a third-party system integrator – with extensive experience in 
developing enterprise applications on the Azure cloud for Fortune 1000 customers –  
to develop a Predictive Analytics application for a network of devices, to run on the  
Azure cloud. The system integrator was given a Product Specification and asked   
to develop the same application using two approaches:

1. Build the application using only Azure native services;

2. Build the application using the C3 AI Suite in combination with Azure services. 

The following report was written by the third-party system integrator to describe their 
process in developing the application, including a detailed account of developer time, 
effort, and coding required using each approach.  

Readers can download the following document as a separate PDF file:

• Product Specification: Predictive Maintenance Application for a Network of Devices 

https://c3.ai/wp-content/uploads/2020/04/Device-Predictive-Maintenance-Specification6.pdf
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Executive Summary

Three Azure system integrator experienced 
software engineers (“the team”) built a simple 
predictive analytics application for AI-enabled 
devices (“the Application”) on C3.ai’s platform 
in combination with Azure (“C3.ai + Azure”) and 
compared it to building a similar application using 
only Azure native services (“Azure Native”). The 
team found that building the Application on C3.ai 
+ Azure accelerated development by a factor of 
18 times, while reducing effort and risk through 
its architectural approach. These findings have 
been determined through a thorough analysis of 
developer experience metrics and inputs, scoring 
the two platforms based on third-party system 
integrator’s ‘ilities framework, and performing a 
SWOT analysis based on those scores.

Developer Experience Findings

For the C3.ai + Azure implementation, the team 
evaluated two approaches: C3.ai Low-Code (i.e., 
Visual Studio Code in the C3 AI Suite) and C3.ai 
No-Code (i.e., the C3.ai Integrated Development 
Studio, or C3.ai IDS). Both the developer 
experience metrics that were collected, as well 
as the inputs from the development team, show 
that C3.ai + Azure required significantly less 
development time than Azure Native, and is more 
pleasant to work with overall.

Findings

Our firm, a premier Azure consulting partner with Azure competencies in Big Data and Machine Learning,  
was commissioned by C3.ai to conduct the Device Predictive Analytics development project described in 
this document, and to prepare the following report of our findings and analysis.
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Table 2. Developer Experience Metrics for Azure Native compared to C3.ai No-Code 

Metrics

90 days

3,047

3 days Reduced by 30x

Reduced by 217x14

Azure Native  
Low-Code

C3.ai No-Code (IDS) 
+ Azure

Effort Comparison Using  
C3.ai + Azure

Total Effort (FTE Days)

Lines of Custom Code

Table 3. Developer Experience Metrics for AWS Native compared to C3.ai Low-Code  

Metrics

118.75 days

16,000

5 days Reduced by 23.75x

Reduced by 19.5x822

AWS Native  
Low-Code

C3.ai Low-Code 
+ AWS

Effort Comparison Using  
C3.ai + AWS

Total Effort (FTE Days)

Lines of Custom Code

Table 1. Developer Experience Metrics for Azure Native compared to C3.ai Low-Code 

Metrics

90 days

3,047

5 days Reduced by 18x

Reduced by 3.7x822

Total Effort (FTE Days)

Lines of Custom Code

Azure Native  
Low-Code

C3.ai Low-Code 
+ Azure

Effort Comparison Using  
C3.ai + Azure

In a previous engagement, the third-party system integrator was engaged to perform a similar comparative 
analysis between C3.ai + AWS and AWS Native. Two developer experience metrics were collected:  
Total Effort and Lines of Custom Code.

Below are the time and lines of code benchmarks based on the third party system integrators work for a 
predictive analytics application.
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Developer Experience Metrics 

The team collected two developer experience 
metrics while building on both the C3.ai + Azure 
and Azure Native platforms. The metrics were 
applied both to the C3.ai + Azure Low-Code 
Solution and to the C3.ai + Azure No-Code 
Solution, which is also comparable to Azure Native.

C3.ai + Azure Low-Code

Using the C3.ai + Azure Low-Code solution as a 
basis, the team found that C3.ai + Azure compared 
favorably in both developer experience metrics. 
The Low-Code solution was the solution utilized to 
build the Application.

C3.ai + Azure No-Code (IDS)

The team was also asked to compare C3.ai + 
Azure No-Code (IDS), to provide input on C3.ai’s 
configuration-based solution. After walkthroughs 
and consulting with C3.ai’s expert solution 
architects, the team found that C3.ai + Azure 
No-Code also provided a better experience for 
predictive analytics application development 
than Azure Native in both developer experience 
metrics. 

For detailed information regarding the metrics 
used, see Comparison Tools in Detail.

1. Time – Using C3.ai + Azure, building the 
Application took a single developer 1 
week. Implementing the same solution 
on Azure Native took three developers 
6 weeks to complete. Developing on the 
C3.ai Platform was 18x faster than using 
Azure Native services. 

2. Lines of Code – Developing the Application 
on C3.ai in IDS eliminated the need for code 
except for a single custom function that 
consisted of 14 lines of code. Using Azure 
Native, the majority of data transformation 
tasks required custom code, and the team 
ended up writing 3,047 lines of code. 
Leveraging C3.ai + Azure decreased the 
lines of code written by a factor of 217x which 
contributed significantly to the reduction in 
time.

‘ilities Findings

The ‘ilities Framework is a comparative analysis 
tool used by the team to objectively evaluate 
and compare solutions and platforms. When 
building the predictive analytics application 
across both C3.ai + Azure and Azure Native, the 
team focused their feedback through the lens of 
the ‘ilities Framework to provide a standardized 
methodology for their evaluations.

The ‘ilities include the following measures:

1. Maintainability

2. Flexibility

3. Scalability

4. Affordability

5. Usability

6. Functionality

7. Interoperability

8. Security
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When evaluating the C3 AI Suite across the ‘ilities 
Framework, the team utilized both qualitative and 
numeric metrics for the comparison. The numeric 
metrics are:

1. Does Not Meet Expectations

2. Somewhat Meets Expectations

3. Meets Expectations

4. Exceeds Expectations

5. Exceptional Performance

C3.ai + Azure compared favorably with Azure 
Native across almost all of the ‘ility dimensions. 
The team found that C3.ai + Azure scored very 
high on Maintainability, which includes Flexibility 

and Scalability, and also was clearly superior to 
Azure in Affordability due to reduction in TCO and 
quicker time to value. Additionally, the simplicity 
and ease of use of C3.ai + Azure garnered high 
Usability ratings, and the Functionality of the 
C3 AI Suite was viewed as close to Exceptional. 
Finally, C3.ai + Azure exceeded expectations in 
comparison with Azure Native when considering 
integrations and visualizations in the area of 
Interoperability. 

C3.ai + Azure and Azure Native had similar 
ratings with regard to Security, because the 
protocols and underlying infrastructure are not 
differentiated.

Figure 1. ‘ilities Scores for C3.ai + Azure in Comparison to Azure Native 

For detailed descriptions of each ‘ility, see The ‘ilities Framework.
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SWOT Analysis 

Based on the developer experience metrics and the ‘ilities Framework analysis, the team has used the 
SWOT Framework to characterize C3.ai + Azure in comparison with Azure Native. The 2x2 grid below shows 
how each characteristic of the C3.ai + Azure platform fits into the analysis.

Strengths (Internally Facing)

The C3.ai + Azure platform provides superior 
Maintainability, Flexibility, and Scalability. Due 
to its elegant architecture, developers can quickly 
adjust data models and data sources to adapt to 
changing use cases and requirements without 
needing to touch underlying infrastructure. 
Additionally, the software makes it extremely easy 
to add capacity as needed to scale to any load.
 
Across Usability, the simplicity of the platform 
provides an interface that creates an excellent 
developer experience. 

In the area of Functionality, the team found 
that C3.ai + Azure scored very high – near to 
Exceptional – compared to Azure Native. As a pure 
AI platform, all the required functions are centrally 
located, which creates an outstanding ease of 
operations for developers.

Weaknesses (Internally Facing)

When evaluating the C3.ai + Azure platform in 
comparison to Azure Native, the team did not find 
any weaknesses.

Figure 2. SWOT Analysis 
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Opportunities (Externally Facing)

Compared with Azure Native, C3.ai + Azure shines 
with outstanding Affordability. The platform’s ability 
to build, scale and maintain the platform much more 
quickly than Azure Native will provide an exponential 
improvement in Total Cost of Ownership, and is a 
significant differentiator in the marketplace. The 
team also found that C3.ai + Azure exceeded 
expectations with regard to Interoperability, in 
comparison to Azure Native. C3.ai’s model-driven 
architecture creates an ease of use for integrations 
and visualizations that provides developers and 
clients with a differentiated experience. 

Threats (Externally Facing)

When evaluating the C3.ai + Azure platform in 
comparison to Azure Native, the team did not find 
any threats. 

Neutral (No Advantage or Disadvantage)

For Security, C3.ai + Azure leverages a Virtual 
Private Cloud and various other data and network 
security layers. This is similar to Azure Native’s 
solution, and the team did not find any significant 
differences in this area.

The C3 AI Suite is a versatile complement of 
applications that are used to perform artificial 
intelligence functions such as predictive analytics, 
supply chain and inventory optimization, fraud 
detection, and maintenance operations. The C3 
AI Suite partners seamlessly with all three major 
cloud service providers: Azure, AWS, and Google 
Cloud Platform.

While these same functions can be developed 
natively on cloud platforms such as Azure, C3.ai is 
confident that its architectural approach to the C3 
AI Suite applications provides a better developer 
experience and packaged costs for their clients.

Why the Architecture Matters

C3.ai has built the C3 AI Suite to be an accelerator 
for industries leveraging AI/ML and IoT to solve 
complex problems at scale. The third-party system 
integrator (the “team”) built a predictive analytics 
application for AI-enabled devices using the 
purpose-built C3 AI Suite platform in combination 
with Azure, and found that its model-based 
architecture drove significant improvements 
when compared to the structured programming 
approach taken on Azure alone. 

Visually, the simplicity of the C3 AI Suite on 
Azure (“C3.ai + Azure”) architecture, versus the 
architecture of the predictive analytics application 
on Azure alone (“Azure Native”), speaks for itself.

Background
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Predictive Analytics on Azure Native Predictive Analytics on C3.ai + Azure

Figure 3. Architectural Comparison between Azure Native and C3.ai + Azure 

From an industry perspective, there are benefits and risks to C3.ai’s model-driven architectural approach, 
both for IT and for the business. C3.ai has consistently found that the benefits outweigh the risks, particularly 
with regard to total cost of ownership and time to value.

• Application build can be 
accomplished by one developer

• Application maintenance is done 
only on the application, not on its 
underlying infrastructure 

• Application scales enterprise-
wide, managing millions of 
models through a single instance

• Developers ramp up quickly on 
each application, making them 
productive quickly

• Valuable new features can be 
produced quickly once the core 
application is built

Total Cost of Ownership   
(“TCO”)

Time to ValueApproach

Model-Driven Architecture
C3.ai + Azure

Decreased Decreased
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To test this belief, C3.ai engaged a premier third-party enterprise systems integrator, to build a predictive 
analytics application for a network of devices (“Application”) on both the C3.ai + Azure and Azure Native 
platforms. This report details and compares the developer experience of the team during these buildouts.

• Application build requires 
multiple developers

• Application maintenance must 
be performed both on the 
application and its underlying 
infrastructure, causing expensive 
dependencies to accrue and 
multiply

• Scales across the enterprise, 
but requires management of 
hundreds of AI projects to utilize 
the same data 

• Developers’ training and design 
time for each custom application 
slow productivity

• Building new features may 
require a rebuild of the entire 
core, slowing time to valu

Table 4. Model-Driven vs. Structured Programming Advantages 

Total Cost of Ownership   
(“TCO”)

Time to ValueApproach

Structured Programming
Azure

Increased Increased
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The team built a predictive analytics application on 
Azure that is both in accordance with Microsoft’s 
reference architecture, and indicative of what 
C3.ai’s customers would build for such a use case.
 
High-Level Architecture

The architecture utilizes out-of-the-box Azure 
products to accomplish the following functions:

1. Ingest both initial seed data and streaming 
data;

2. Determine alerts and predict metrics;

3. Store input data, intermediate data, and 
results; and

4. Present the data for analysis.

Azure Data Factory and IoT Hub ingest seed 
and real-time data. Data are persisted at various 
times throughout the process into different 

storage resources depending on the structure 
and availability requirements of the data. Hot, 
structured data are stored in Synapse, a data 
warehouse solution in Azure; hot, unstructured 
data are stored in Cosmos DB, a NoSQL data 
store; and cold data are stored in Azure Data Lake 
Storage Gen2 (hereafter referred to as “Azure 
Data Lake”), a data lake solution. Databricks is 
used to enhance and transform the data. After the 
machine learning features are prepared, Azure ML 
Studio is used to train the machine learning model 
and deploy it to an endpoint so that predictions 
can be generated for streaming data. Finally, 
all the device data are displayed as interactive 
visualizations on Power BI, Microsoft’s business 
analytics dashboarding service.

The below diagram shows this high-level 
architecture:

The Azure Native Solution

Figure 3. Azure Native Architecture
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Developer Experience Metrics and Inputs

The team tracked three metrics to measure the complexity of developer experience: amount of time to 
develop the entire Application, amount of time to develop key pieces of the Application, and lines of code to 
develop the Application.

To further understand and document the 
complexity of developer experience on each 
platform, the team captured screen shots of 
configurable features and capabilities at the user 
story level.

These developer experience metrics and inputs 
supplied critical data points for the differentiators 
C3.ai evaluated in this report. 

The ‘ilities Framework

In addition to the developer experience metrics, 
the team leveraged their proprietary ‘ilities 
Framework to capture other, more complex 
aspects of the comparison. The ‘ilities Framework 
describes a solution (the Application on C3.ai + 
Azure) by determining how well it compares to a 
similar solution (the Application on Azure Native) 
across eight factors: Functionality, Usability, 
Affordability, Maintainability, Flexibility, Scalability, 
Interoperability, and Security.

Comparison Tools in Detail

Table 5. Comparison Tools in Detail

Measurement Level trackedMetric Task

Amount of Time

Amount of Time

Lines of Code

Developing the entire 
application with one FTE

Developing key pieces of 
the Application

Any customizations where 
configuration is no longer 
usable and code is needed 
to achieve parity

Days

Hours

Integer

Project Level

Task Level; added and 
rolled up to Epic Level

Project Level
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Example Sub-CriteriaCriteria Description

1.   Functionality

  B
us

in
es

s
  T

ec
hn

ic
al

2.   Usability

4.  Maintainability

6.  Scalability

5.  Flexibility

7.  Interoperability

8.   Security

3.   Affordability

Solution’s ability to deliver 
its required capabilities and 
meet the business needs

User’s productivity when 
working with the solution

Level of effort required to 
keep solution running while 
in production including 
problem resolution and 
ongoing support

Solution’s ability to support 
additional users while 
meeting quality of service 
goals

Solution’s ability to 
accommodate additional 
business processes or 
changes in functionality

Solution’s ability to interact 
effectively with other 
systems or components

Solution’s ability to prevent 
unauthorized disclosure, 
loss, modification or use of 
its data or functionality

Solution’s overall cost 
including acquisition and 
on-going maintenance

•    Specific features

•    Reporting

•    Specific  
requirements

•    Error  
handling

•    Assistance

•    Learnable

•    Hardware costs

•    Licensing costs

•    Manageable

•    Operable

•    Adaptable

•    Configurable

•    Capacity

•    Throughput

•    Integration  
protocol

•    Access Control

•    Encryption

•    Recoverable

•    Analyzable

•    Maneuverable

•    Resource  
utilization

•    Response time

•    Loosely coupled

•    Tiered

•    Secure design

•    Auditability

•    Modular

•    Productive

•    Implementation 
costs

•    Structured

•    Support costs

•    Training costs

•    Testable

•    Upgradeable

•    Modifiable

•    Reliability

•    Legislative 
compliance

•    Authentication

Table 6. The ‘ilities Framework
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Updating the SWOT Analysis

Finally, bringing in an overall platform perspective inclusive of an industry view, the team has provided a 
Strengths, Weaknesses, Opportunities, and Threats (SWOT) Analysis comparing C3.ai + Azure to Azure 
Native. To remain consistent and avoid duplicating work, the SWOT Analysis from the previous report on 
AWS was brought in and updated.

The SWOT Analysis includes:

• Platform Strengths (Internally Facing to Users)

• Platform Weaknesses (Internally Facing to Users)

• Platform Opportunities (Externally Facing to Market)

• Platform Threats (Externally Facing to Market)
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Project Narrative

The team compared building a simple predictive 
analytics application (the “Application”) using 
native Azure services (“Azure Native”) to using 
the C3 AI Suite built on Azure (“C3.ai + Azure”). In 
both cases, the team sought to ingest, unify, and 
federate the raw data, process it, train a machine 
learning model that predicts the likelihood of 
failure within the next 30 days for each device, and 
build an application user interface. 

The provided data sets for the Application 
included:

• Device type, wattage, location, manufacturer, 
and date of manufacture

• Power grid status

• Device fixture location

• Device telemetry including watts, lumens, 
voltage, and temperature

• Device event history

• Device fixture data

Building a risk prediction model for each device 
required that the telemetry / measurement data be 
analyzed over time. For example, the Application 
uses the following time-series:

• Average Lumens per Smart Device – Light 
generation over time for the smart device

• Average Power per Smart Device – Power 
usage over time for the smart device

• Duration On per Smart Device – The total 
amount of time (in hours) that a device has 
been switched on up to the interval

• Switch Count per Smart Device – The number 
of times a device is switched on or off 

• Power Grid Status per Building – an external 
factor indicating whether the local power grid 
was functional over time at a specific building

The target variable is to predict the likelihood of 
device failure within the next 30 days from a given 
point in time. It is left up to the development team 
how to make this prediction, although the industry 
best practice is to train a machine learning model 
using the provided data. With this predictive model 
in place, predictions must be generated as new 
data are received for each device.

To make the predictions actionable, they must be 
presented to end users. The user interface for the 
Application consists of two screens and seven 
displays reporting on the number, location, risk 
score, and status of devices as seen below: 
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A summary of key metrics including the total 
number of devices at risk, the total number of 
devices, and the number of failures YTD

1. 

A map showing the location of all devices, 
colored green for devices with risk scores 
<50% and red for risk scores >50%

3. 

A histogram showing the distribution of 
devices, grouped by risk score

2. 

A table of device-level detail, including device 
ID, risk score, type, manufacturer, and date of 
install

4. 

Figure 4: UI Screen 1 – Four displays showing the status and health of the entire population of devices.
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A summary of key metrics including the cur-
rent risk score, status, power and  
temperature of the selected device

1. A chart illustrating the selected device’s risk 
score over time

2. 

All elements on the screen can be filtered by multiple dimensions. Selecting an individual device from the 
table presents a device detail screen, with details as seen below:

A summary of key metrics including the total 
number of devices at risk, the total number of 
devices, and the number of failures YTD

3. 

Figure 5: UI Screen 2 – Three displays showing the health and history of an individual device (accessed by selecting a device from the table in 
Screen 1)
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Infrastructure Configuration 

The C3 AI Suite does not require any infrastructure 
to be configured or maintained. Deploying a 
new instance of C3.ai on Azure takes four hours. 
Deploying a new tenant within an existing instance 
takes approximately three minutes. 

Data Model

The team began building the Application by 
creating C3.ai Types to comprise a unified data 
model. Types are code representations of real-
world objects that make up a business – in this 
case, devices, buildings, facilities, manufacturers, 
etc. Each Type contains the metadata that define 

its relevant datastores (distributed file system, 
relational, NoSQL) and its relationships to other 
Types in the data model (e.g., one facility has ten 
devices from a single manufacturer). The C3.ai 
Type System allows individuals with different 
functions and specializations – e.g., developers, 
data scientists, and business analysts – to work 
on a shared abstraction layer without having 
to configure or maintain the underlying data 
federation and storage models, dependencies, 
or infrastructure. Building the Application’s data 
model with the C3.ai Type System required six 
hours and one developer. 

C3.ai + Azure Solution

Developing the Application with the C3 AI Suite on Azure was uncomplicated. Learning the C3.ai Type 
System and building the Application required five days of training. 

Device
Light Bulb Predictive Analytics

DevicePowerSource

PowerGridStatus

DeviceMeasurement

DeviceEvent

DeviceWeather

PowerSource

Figure 6: Architecture to build predictive analytics on C3.ai + Azure.

C3 AI Suite

C
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Azure - Infrastructure as a Service
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Data Integration 

Next, the team used the C3 AI Suite’s native data 
integration capabilities to integrate, index, and 
normalize the device data. Prior to integrating 
data, a Canonical Type was defined for each of 
the six data sources. The C3 AI Suite includes 
native functionality to import data from any source 
– while the team worked with CSV files, C3.ai 
includes pre-built connectors to commonly-used 
relational databases, NoSQL databases, and 
distributed file systems. All fields on Canonical 
Types are mapped to a data source to define 
the incoming data model which de-couples the 
Types used by data scientists and developers from 
external changes. Integrating data required six 
hours and one developer.

Time Series Metrics

The team then used C3.ai Types to generate 13 
time series metrics, which fetch C3.ai Type data 
to produce a normalized time series. Initially, the 
team was introduced to Simple Metrics which 
are useful for common time-series manipulation 
requests (sum, average, min, max, etc.). Next, the 
team began developing Compound Metrics, 
built as extensions of Simple Metrics, to be 
incorporated into application logic and serve as 
features in the machine learning development 
process. The team also wrote additional methods 
for the SmartDevice Type which allow for more 
complex calculations on the data using JavaScript 
or Python. Creating the 13 metrics took eight hours 
for one developer to complete.

Analytics

Next, the team used C3.ai’s native, asynchronous 
processing engine to create data flow events 
(DFEs). Using DFEs, the team created three 
analytics that automatically generate operator 
alerts when certain operating thresholds were 
met/exceeded. These alerts could be routed via 
email or SMS messages. Creating these three 
analytics and configuring the DFEs took one 
developer six hours to complete.

Machine Learning

The team created risk-of-failure scores for the 
Application using Jupyter Notebooks and Python, 
both supported natively by C3.ai. By having the full 
functionality of the C3.ai and C3.ai Type Systems 
natively integrated with Jupyter Notebooks, 
data scientists are provided easy access to 
leverage familiar tools and efficiently develop 
solutions. A classification model was trained 
that regressed the metrics SwitchCountWeek 
and DurationOnInHours against the dependent 
variable WillFailNextMonth to calculate the 
probability of device failure in the next 30 days. 
Device failure was determined by instants where 
the device status and related power grid status 
were “on” with a lumen reading of “0”. The system 
stored the periodically generated risk scores as 
another time series metric, RiskScore. Machine 
learning algorithms on C3.ai operate on all existing 
data, create new data that can be automatically 
attached to a C3.ai Type for future processing, 
automatically update training, and make 
predictions on the latest available data. For the 
Application, the area under the receiver operating 
characteristic (ROC) curve was .990. Training the 
machine learning model and the machine learning 
pipeline took one developer six hours to complete.
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User Interface

The team incorporated several C3.ai Types and 
time series metrics in a web interface built using 
custom C3.ai HTML and UI templates. These 
were then used to create the dashboard of the 
Application. The dashboard UI template was 
one JSON file that contained the code for the 
components of the dashboard such as a status 
map, a filter, a histogram and a table. The UI also 
included automatically updated predictive risk 
scores about the likelihood of smart device failures 
(incorporated using the RiskScore metric). 

Finally, a few potential roles were created 
that would be assigned to future users of the 
Application. These roles enable administrators 
to restrict user permissions for specific needs 
of different user types. Building the UI and 
configuring access controls took one developer 
four hours to complete.Infrastructure Configuration (Data Lake Storage, 

Active Directory, Resource Manager)

Create APIs and UI (API, Angular, PowerBI)

Develop Analytics (Functions, Event Grid)

Develop Time Series, Metrics, and Machine Learning 
(Databricks, Functions, Cosmos DB)

Integrate Data (Data Lake Storage, 
Stream Analytics, Functions)

Develop Data Model (Synapse, Cosmos DB)

Azure Build - 
3 Full-time Equivalent Persons

weeks

1 2 3 4 5 6 7 8

Infrastructure Configuration

Create APIs and UI

Develop Analytics

Develop Time Series, Metrics, and Machine Learning

Integrate Data

Develop Data Model

Azure + C3.ai Build - 
1 Full-time Equivalent Person

weeks

1 2 3 4 5 6 7 8

Azure + C3.ai Implementation Timeline: 1 Person-Week

Figure 7. Predictive Analytics Application on C3.ai + Azure  
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The architecture for the Azure Native application 
made heavy use of out-of-the-box Azure-
managed services, including Azure IOT Event 
Hubs for data ingestion; Azure Synapse Data 
Warehouse, Cosmos DB, and Azure Data Lake 
for data persistence; Azure Databricks for data 
transformation; Azure ML Studio for machine 
learning training and inference, as well as 
Microsoft Power BI for data visualization. This 
architecture stems from our collective years of 
experience working with Azure services at a deep 
level – our firm is a Gold-level Microsoft consulting 
partner with competencies in Cloud Platform, 
Application Development, Data Platform, and 
Data Analytics. We have developed and deployed 
hundreds of applications on Azure for hundreds of 
Fortune 2000 customers.

At the onset of the project, the team agreed to 
use as many out-of-the-box native features as 
possible, leveraging pre-built Azure components 
and only writing custom code and queries where 
the built-in features were too limited to provide the 
requisite functionality. 

The Azure architecture used for building out the 
Application is based on a reference architecture 
by Microsoft, which includes Databricks on 
Azure. It has been thoroughly reviewed by C3.ai 
senior architects to ensure the architecture is 
representative of how a C3.ai customer would 
approach setting up their own predictive analytics 
application. 

Developer experience metrics were tracked 
while developing the Application, including time 
required to complete the entire project and time 
required to develop each high-level component. 
Where code was utilized, the team tracked the 
number of lines of code as well.

The architecture diagram below displays the 
overall Azure architecture and how the various 
components interact to meet the Application 
specification.

The Azure Native Solution
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Below we describe the buildout of the Azure 
solution in detail, starting with the infrastructure 
configuration and ending with displaying the 
results using PowerBI, an Azure native visualization 
tool.

Infrastructure Configuration 

In order to parallelize environment setup and 
minimize developer conflicts, the team divided the 
infrastructure tasks into the following categories: 
basic access, ingestion, storage, transformation, 
machine learning, and delivery. The work began 
by creating a new Azure subscription and 
configuring basic access control and security 
policy permissions. Once the subscription 
was configured, the team was able to begin 
provisioning the services in Azure needed to build 
the Application. 

Initially, the team created resources to support 
the ingestion process for historical and streaming 

data – Azure IoT Hub, Azure Stream Analytics, 
and Azure Data Factory. After the team had the 
services necessary to ingest data, Azure data 
stores were provisioned to persist data with 
different structure and availability needs – Azure 
Cosmos DB (unstructured-hot), Azure Synapse 
(structured-hot), and Azure Data Lake (cold). 
Next, the team set up the services in Azure 
needed to transform device data and perform 
machine learning tasks – Azure Databricks and 
Azure Machine Learning Workspace. In a newly 
created subscription, Azure Databricks is limited 
by the default compute quota. In order to remove 
that restriction, the team opened a ticket with 
Microsoft to increase the compute quota and the 
issue was resolved in less than one day. Finally, the 
team provisioned a Power BI instance to deploy 
dashboards for end users to derive actionable 
business intelligence from streaming data and risk 
predictions.

Figure 8. Azure Native Architecture
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Deploying resources in Azure can be done via 
the Azure Portal or using the Resource Manager 
API. The team leveraged the no-code option 
of deploying resources via the Azure Portal. 
Modifying existing resource configurations is 
a manual process that can also be done via 
the Azure Portal with no code. Maintaining the 
underlying infrastructure is handled by Azure and 
requires no effort from the development team.
 
Leveraging the Azure Portal, the team set up the 
infrastructure in 5 developer days.

Data Model

The team built the Data Model in accordance 
with the Canonicals in C3.ai. To optimize the 
different forms of incoming data for read and 
write efficiency, time series data were loaded 
into CosmosDB as JSON objects and non–time 
series data were stored as tables in Synapse. The 
schemas of the Synapse tables were very close 
to those of the files provided by C3.ai, apart from 
the column names. For example, the column 
representing “Smart Device ID” has varying names 
in each of the seed files (e.g., “id”, “smartDeviceId”, 
“SN”). These differences in the incoming data were 
normalized when loaded into the data warehouse.

Structured Data in Synapse

To create the Synapse tables, the team first 
uploaded the raw CSVs into a blob container in 
Azure Data Lake. A connection from Synapse 
was then created, registering the blob container 
as a Synapse Datastore. Next, SQL queries were 
written to create an external table on each of the 
seed files.

From these external tables, the team created the 
working tables through SQL queries. Values from 
the external tables that defaulted to string values 
were converted into integer, decimal, and datetime 
types where appropriate. Column names and 
value formats were corrected to be consistent 
across tables. Primary keys and indexes were 
added to optimize table operations. While the 
process of creating internal tables from external 
tables could also be used for some data cleaning 
operations such as omitting null values or only 
taking values within a certain range, the team did 
not need to build in that functionality because 
the data contained no null values or other data 
anomalies that required cleaning.

The team wrote approximately 300 lines of SQL 
to connect to Azure Data Lake and create the 
external and internal tables in Synapse. Modeling 
the relational data in Synapse took a single 
developer 7 days.

Unstructured Data in Cosmos DB

Configuring Cosmos DB to handle unstructured 
device data primarily consisted of determining 
the appropriate partitioning strategy. Cosmos 
DB is a highly available, distributed data store 
that works best when partitions are created to 
reflect natural divisions in the data being stored. 
The team decided to partition the device data by 
SmartDeviceId, optimizing for the common use 
case of querying measurement data pertaining to 
a specific device.

Modeling our key-value data in Cosmos DB took a 
single developer 3 days.
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Data Integration

The team defined data integration as the process 
of combining data from different sources into 
a single platform. Integration begins with an 
ingestion process and includes any subsequent 
steps necessary to model, enhance, and transform 
the data. Ultimately, a successful data integration 
pipeline enables the delivery component 
of a solution to provide actionable business 
intelligence.

The team began integration by importing seed 
data into the environment. First, the provided 
flat files with raw device data were uploaded 
into Azure Data Lake. Next, structured data was 
imported into Synapse and unstructured data into 
Cosmos DB. For Synapse, the structured flat files 
were referenced as external tables and used to 
create internal tables that would hold metadata 
about each entity (e.g., Smart Device, Fixture, 
Building). For Cosmos DB, the hourly time series 
data was imported through the Azure Stream 
Analytics Job that was developed to handle 
streaming data. Leveraging Stream Analytics 
allowed the team to test the job and ensure 
consistency between processing historical and 
live data. All seed data are retained in Azure Data 
Lake for reference, debugging, and creation of 
new environments in the future. 

Ingesting the seed data took the team 3 developer 
days.

Streaming data enter the Azure Native 
environment via Azure IoT Hub endpoints. Every 
hour, a file is sent to the IoT instance with simulated 
device data which is processed by the Stream 
Analytics job tested on the seed data. Once 

processed, the data are persisted in Cosmos DB 
and Azure Data Lake.

Configuring the IoT Hub to ingest streaming data 
took a single developer 2 days.

After streaming data are persisted in Azure 
Data Lake, the Azure Data Factory pipeline that 
orchestrates the machine learning process is 
triggered. The pipeline will pass the file path 
location of new data to a Jupyter Notebook 
in Azure Databricks, which is responsible for 
generating features and retrieving predictions. 
The predictive model was developed in Azure 
ML Studio and hosted on an Azure Kubernetes 
Cluster.

Setting up an Azure Data Factory pipeline 
to process data and connecting the Jupyter 
Notebook to the predictive endpoint took a 
combined effort of 20 developer days.

Time Series Metrics and Analytics

Stream Analytics

Streaming data enter Azure via IoT Hub and are 
immediately passed through Stream Analytics. 
The team configured simple Stream Analytics 
Jobs to format the incoming data in ways that 
suited downstream processes – specifically, 
preparation for machine learning operations. 

Creating a new job requires minimal code (~20 
lines), but still took a single developer half a day to 
complete. Most of the effort consisted of testing 
transformations against incoming data and 
ensuring stability of downstream processes.
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The team attempted to do more complex 
transformations of streaming measurements to 
enhance the data earlier on in the pipeline and 
reduce the workload of downstream processes. 
For example, logic was developed to calculate 
the Metric “SwitchCountPreviousWeek” using 
a SQL-like windowing function. Unfortunately, 
Stream Analytics could only handle minor gaps in 
the data, which was not sufficient for the predictive 
analytics use case. The decision was made to use 
Databricks for all complex transformation logic 
moving forward.

Databricks

Once the seed data was ingested into the data 
stores, the team began developing the application 
metrics in Databricks. Azure Databricks is an 
Apache Spark based platform optimized for 
big data analytics on services in the Azure 
platform. Developing the metrics in Databricks 
consisted of writing custom Python logic in 
Jupyter Notebooks that would retrieve the 
appropriate time-series input and generate the 
expected time-series output. Implementing the 
required analytics involved writing additional 
custom Python logic that leveraged existing 
metric functions to generate alerts. In order to 
accelerate the development process, the team 
leveraged pandas, a popular open-source tool 
for data analysis and manipulation that is included 
by default in a Databricks Python environment. 
Pandas offers data structures and operations 
for manipulating time-series data and integrates 
well with the Python Spark library, pyspark, 
to maximize the benefits of Spark distributed 
processing capabilities.

Using pandas, a single developer was able to 
implement 13 time series metrics and 3 analytics 
in 6 days.

Implementing custom Python logic in Databricks 
Jupyter Notebooks would be risky and difficult 
to maintain in a production environment. While 
Databricks does offer integrations with version 
control tools, the team found it difficult to manage 
when Notebooks were connected to other Azure 
services. Additionally, writing complex logic in 
Jupyter Notebooks is not considered best practice 
and introduces a significant challenge for testing 
and code quality assurance. To mitigate these 
risks, the team decided to export the metric logic 
into a custom Python package, pybulb, that could 
be maintained in the repository.
 
Exporting the code, writing unit tests, and 
integrating the package into the data flow took the 
same developer another 10 days.
 
Machine Learning

Databricks

The team used Databricks for the initial machine 
learning pipeline. The pipeline includes ingesting 
data from an outside source, using time series 
metrics to extract features for ML model 
development, training and testing different ML 
models, and then deploying an inference pipeline 
to generate predictions from streaming data.
 
In Databricks, the team used a set of Python 
classes and methods in a Jupyter notebook to 
integrate metrics, as described above. These 
were used in Databricks to generate a Pandas 
dataframe with the solution’s ML features. After 
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exploring these data, the team found that the 
number of “true” values for “WillFailNextMonth” 
was less than 2% of the total number of samples. 
Therefore, the oversampling method SMOTE was 
utilized to balance the training data. These data 
were used to train a logistic regression model and 
validated with the testing data.

The team generated statistics to evaluate the 
logistic regression model, such as accuracy, 
precision, recall, and AUC. ML Flow, a ML Lifecycle 
management platform, was utilized both to 
track iterations of the ML model, save metrics 
and artifacts related to each run, and to save the 
model.

The team used a separate notebook for the 
inference pipeline. This notebook is triggered 
when new streaming data are added into Azure 
Data Lake to process the streaming data. Risk 
scores are generated for each streaming device 
and written to Azure Data Lake. Alerts are 
generated when metadata of streaming devices 
meet a specific condition. For example, when a 
device has a temperature of over 95 degrees, an 
Overheat alert is generated. Such alerts are then 
written to a table in Synapse.

In total, the team wrote approximately 500 lines 
of code in Databricks to develop the machine 
learning model and inference pipeline. This took 
two developers a total of 6 days to complete.

Azure ML

Model Training, Testing and Deployment

Many C3.ai customers prefer to use Azure ML 
over Databricks for their production ML pipelines. 
To reflect this use case, the team replaced the 
model training, testing, and deployment in the 
initial Databricks implementation with an Azure ML 
pipeline. 

Compared to Databricks, Azure ML connected 
seamlessly to Azure storage resources. Datasets 
were easily generated from files and tables that 
existed in the Synapse tables and blob storage. 
Once the ML features were prepped and loaded 
into Azure ML, it was very simple to train data, 
score models, and evaluate results with Azure’s 
click-and-drag Designer interface. Machine 
learning and data manipulation processes were 
represented by modules that can be easily 
connected to indicate data flow. 

Using the same training and testing data, the team 
evaluated 6 different two-class classification 
algorithms in much less time than it would have 
taken to do the same in Databricks. In the Azure 
solution, 250 lines of code were re-used from the 
Databricks solution to generate ML Features and 
100 lines were re-used to write predictions and 
alerts to the backend. Approximately 50 additional 
lines of code were written in Databricks to handle 
Azure ML predictions. 

Setting up data in Azure ML, comparing six 
classification algorithms, deploying our model 
as an endpoint, and writing code to access that 
endpoint in Databricks took 6 developer days.
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Feature Engineering

The team re-used the Databricks code for feature 
engineering because Azure ML’s Designer 
requires near-ready ML feature data sets. The 
team found the data transformation capabilities of 
Designer to be a bit lacking when compared to the 
wide-ranging capabilities of the ML frameworks 
available on Databricks (e.g., scikit-learn, 
TensorFlow, PyTorch, H2O). It handled simple 
transformations, such as deleting duplicates, filling 
in missing values, and joining tables very easily 
with its click-and-drag interface. More complex 
transformations required a SQLite Query module 
or Python Script module to execute. 

To mirror the metrics functionality in C3.ai, the 
team used a series of classes and functions in 
Databricks to generate features. When moving 
to Azure ML Studio, in comparison to using 
Notebooks in Databricks, it was noted that the 
coding experience in the Python Script module 
was not robust. There is no way to execute code in 
different blocks and view output, and everything 
must be defined in a single function. In addition, 
the entire ML pipeline must be run to execute the 
Python script module, and any errors other than 
syntax errors did not have line numbers, only the 
name of the exception. For data sets that require 
complex transformations for feature engineering, 
a more robust coding environment would be 
recommended.

Figure 9. Azure ML Designer Interface: Training, testing and evaluating six classification algorithms on data oversampled for WillFailNextMonth.
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Figure 10. Python Editor in Azure ML Designer: Basic text editor without Intellisense, syntax correction, or debugging functionality.

User Interface

Power BI was used to implement the Application 
user interface. The UI was built in Power BI 
Desktop and then published to the Power BI 
Service where it could be distributed. The 
original plan was to leverage Power BI only to 
build the data visuals needed for the UI. Those 
visuals would then be embedded in an Angular 
application hosted in Azure. However, Power BI 
has the capabilities needed to build entire UI in a 
single two-page report and so the Angular app 
was removed in favor of this simpler approach. 
The steps required to create the Application 
UI as a Power BI report can be condensed into 
four categories: Connect, Transform, Model, and 
Visualize. These categories are described in detail 
below.

Connect

The first step to implement the report was 
to connect to data sources in Synapse and 
Databricks. This was a trivial task since each of 
these data sources have native data connectors 
within Power BI. Synapse can be accessed as a 
SQL Server database and Databricks’ underlying 
data store is an Apache Spark database. The 
required connection strings are available in the 
Azure Portal. 



31© 2020 C3.ai  |  All Rights Reserved  |  20_0717

Third-Party Report by Azure Premier System Integrator    

There are three mechanisms available for bringing 
data into Power BI: Import, Direct Query, and 
Streaming. Import, as the name implies, involves 
importing the full data set from the source 
database into Power BI memory. Conversely, 
Direct Query will create a connection to the 
source database and pull data as needed based 
on transformations and filters. Finally, Streaming 
can be used to send live data directly to Power 
BI for storage and use. Generally, streaming will 
be used in parallel with Import. The initial data set 
will be imported, and live data will be streamed 
in using tools such as Azure Stream Analytics. 
The Application report currently uses Import for 
all data sourced in Azure. There is technically a 
fourth mechanism known as Custom Data, which 
is defined to hold raw reference data stored within 
Power BI and not an external data store. This 
will be discussed in more detail in the Transform 
section since it is not used to connect to an 
external database. 

It took less than half an hour for each connection 
depending on the research required to find the 
appropriate connection strings. This is a no-code 
solution.

Transform

Once a connection is established, data are 
transformed and enhanced using Power BI’s 
Power Query Editor. The Power Query Editor is 
used to transform and enhance data imported 
from an external database as well as create 
new tables from scratch. More advanced 
transformations can be defined using Power BI’s 
M language, which is the scripting language that 
backs the Power Query Editor. 

1. The Fixture table in Synapse contains the 
relationship between all Fixtures, Apartments, 
and Buildings. This table was transformed into 
three tables when brought into Power BI. 

a. Fixture – A table containing all unique 
Fixture IDs and the Apartment IDs they 
belong to. 

b. Apartment – A table containing all unique 
Apartment IDs and the Building IDs they 
belong to.

c. Building – A table containing all unique 
Building IDs

2. The Smart Device table in Synapse was split 
into three tables when brought into Power BI.

a. Smart Device – The raw data in the Smart 
Device table

b. Manufacturer – A table containing all 
unique Manufacturer IDs

c. Device Type – A table containing all 
unique Device Type IDs

3. The date time column in the Smart Device 
Measurements table is stored as a Unix 
Timestamp in Databricks. When that table is 
brought into Power BI, a custom column is 
created that transforms the timestamp into a 
Date Time string.

4. All tables have data type transformations 
defined. Power BI tries to guess, but in certain 
places string type needs to be turned into a 
decimal type and decimal type needs to be 
turned into a percentage type.

5. All tables and many columns were renamed 
for readability within Power BI Desktop.
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Custom tables required by the Application Report:

1. Failure Risk Group – A custom table was 
created for use in the histogram visual which 
contained all the percentage groups that 
would be shown. This table defined using the 
Power Query Editor “Enter Data” wizard. All 
rows were entered by hand.

2. Date Times – This table contains all dates and 
times (at an hourly granularity) from the first 
date in the Smart Device Measurements table 
to the end of the year of the current date. This 
table is created by invoking a custom function 
written in M that takes as input a start date and 
an end date.

It took roughly one day to add the required 
transformations. This is a low-code solution 
where the Power Query Editor automatically 
generates the M code required for the defined 
transformations. For all transformations, 106 lines 
of code were generated.

It took less than 30 minutes to create the Failure 
Risk Group table. This table was created in a 
wizard and required no code. The Power Query 
Editor generated 3 lines of code to define pulling 
the data set in from the JSON file it lives in.
It took roughly half a day to create the Date Times 
table. The M function that generates the table 
contains 18 lines of code. The Power Query Editor 
generated 5 lines of code to execute the function 
and pull in the resulting data set. 

In total, it took one developer around a day 
and a half and 127 lines of code to create the 
transformations required for the User Interface on 
the Azure Native solution.

Model

After the transformations are finished, foreign 
key relationships between the tables must be 
modeled. Power BI will make its best guess at 
defining these automatically, but because the data 
sets in Azure are stored in two separate databases, 
some relationships need to be fixed. Power BI 
provides a wizard where these relationships are 
visually represented. Below is an image showing 
this screen and all relationships defined for the 
Application. The relationships can be defined via 
drag and drop or through a secondary wizard 
where columns are selected.

This is a no-code solution that takes one 
developer less than an hour to complete.

Below is an image showing the model wizard and 
all relationships defined for the Application.
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Figure 11. PowerBI Model Wizard and Relationships 
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Visualize 

The final step in building out the report is adding 
the visuals. Visuals displaying raw data will directly 
reference imported data and can be built very 
rapidly. However, visuals that need to perform 
more complex analysis on imported data will use 
Measures written using Power BI’s Data Analytics 
Expressions (DAX) queries. DAX can also be 
used to define calculated columns on existing 
tables, which is needed for the histogram visual 
and current value visuals. Each visual needs to be 
styled to fit the spec.

Dashboard Visuals:

1. Summary 

a. Three card visuals displaying summary 
data. 

i. Each card is backed by a Measure.

1. Devices at Risk

2. Total Devices

3. Failures (YTD)

b. One Text Box used for the title.

c. One Rectangle object and one line object 
used to create borders.

2. Filters

a. Four Slicer visuals used for filtering. 

i. Each Slicer directly references a 
table column.

b. One Button used to clear all filters. This 
is implemented by utilizing Power BI’s 
bookmarking feature. A bookmark was 
created that points to the report in a state 
without filters applied. This bookmark 
was then attached to the Clear All button.

c. One Text Box used for the title.

d. One Rectangle object and one Line 
object used to create borders.

3. Risk Score Histogram

a. One Histogram visual. 

i. Data comes from the Failure Risk 
Group table.

1. Axis categories are created in 
the table definition.

a. 0 – 10%
b. 10 – 20%
c. Etc. 

2. Device Count Per Category 
is defined as a calculated 
column with DAX.

3. Legend labels are created in 
the table definition.

ii. Styling is applied.

4. Device Map

a. One Map visual. 

i. Latitude and Longitude data comes 
from the Smart Device table.

ii. Tooltips in addition to Latitude and 
Longitude are backed by Measures.

1. Devices at Location

2. Devices at Risk

iii. Styling is applied.
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5. Devices Table

a. One Table visual.

i. All columns except for Risk Score 
come from the Smart Device table.

ii. Current Risk Score is defined as a 
calculated column attached to the 
Smart Device Latest table.

Device Details Visuals:

1. Summary

a. Five card visuals displaying current data.

i. Each card is backed by a  
Calculated Column in the Smart 
Device Latest table.

1. Current Status

2. Current Lumens

3. Current Voltage

4. Current Power

5. Current Temperature

b. One KPI visual displaying risk score data

i. The KPI is backed by two Measures 
and a Date Time column.

1. Risk Scores Previous 24 Hours

2. Risk Scores Previous 48 
Hours

c. One Rectangle object and one Line 
object used to create borders.

2. Device Measurements Chart

a. One Line Graph Visual

i. X Axis is defined by the Date Time 
column in the Date table.

ii. Y Axis references data directly from 
the Smart Device Measurement 
table.

iii. Styling is applied.

3. Devices Table

a. One Table visual.

i. All columns come from the Smart 
Device Measurement table.

ii. Styling is applied.

It took roughly 15 developer days for a single 
developer to build this report. Adding the visuals is 
all drag and drop. It took 70 lines of code to define 
Measures and Calculated Columns using DAX. 
An additional 7 developer days were required 
to validate functional capabilities and research 
acceptance testing options for Power BI. The 
team decided not to incorporate acceptance 
testing into the build because Microsoft provides 
sufficient metrics for Power BI performance.



36© 2020 C3.ai  |  All Rights Reserved  |  20_0717

Third-Party Report by Azure Premier System Integrator  

Azure Implementation Timeline

The following diagram shows the timeline required to implement the Application on Azure. In comparison 
to the C3.ai + Azure solution, the Azure Native solution required 3 developers for 6 weeks, instead of 1 
developer for one week with C3.ai + Azure.

Figure 12. Azure Native Solution Build Timeline

Azure Solution  
Development Begins

4/17/20 4/27/20 5/7/20 5/17/20

Dev Complete

Infrastructure

Data Modeling

Data Integration

Power BI/Presentation Analytics

Machine Learning

Time Series Metrics

4/7/20 5/27/20
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Comparative Observations

The team calculated three metrics to compare 
between the C3.ai + Azure and Azure Native 
predictive analytics implementations: total 
amount of time (days) to develop the complete 
Application, amount of time (hours) to develop 
each key component of the Application, and the 
lines of code necessary to customize the solution 
where no-code tools were inadequate.

C3.ai + Azure Low-Code

In all metrics, the team found that C3.ai + Azure (i.e., 
the C3 AI Suite in combination with Azure) is faster 

and simpler for predictive analytics application 
development than Azure Native. The Azure Native 
application required three highly experienced 
developers for 6 weeks, whereas the C3.ai + Azure 
application was completed by one developer in 
5 days. The Azure Native application required 
3,047 lines of custom code. Comparatively, the 
C3.ai + Azure solution was written using only 822 
lines of code due to the functionality provided by 
C3.ai Types. Detailed component-level hour and 
configuration step results are shown below.

Project Metric Comparison

After building the solution on both C3.ai + Azure and Azure Native, there were differences in both project 
metrics and developer experience. Overall, the C3.ai + Azure solution saves time and effort while reducing 
delivery risk over the Azure Native solution.
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Table 6. Developer Experience Metrics (C3.ai + Azure Low-Code)

Measured In Level Tracked
C3.ai + Azure  

Low-Code 
Estimated

C3.ai + Azure  
Low-Code  

Actuals1

Azure Native 
Estimated

Azure Native 
Actuals

Metric Task

Amount of Time

Amount of Time

Lines of Code

Developing the 
entire application 
with one FTE

Developing key 
pieces of the 
Application

Any 
customizations 
where 
configuration 
is no longer 
usable and code 
is needed to 
achieve parity

Days

Hours

Integer

Project Level 3 Days 5 Days 180 Days 90 Days

Task Level; added 
and rolled up to 
Epic Level

N/A Design Time  
0 Hours

Build Data Lake 
and Ingest Data 
0 Hours

Model and 
Enhance Data2 
7 Hours

Transform Data3 
18 Hours

Deliver Data 
0 Hours

Analyze and 
Visualize Data4   
3 Hours 

Design Time  
80 Hours

Build Data Lake 
and Ingest Data 
40 Hours

Model and 
Enhance Data 
80 Hours

Transform Data 
60 Hours

Deliver Data 
100 Hours

Analyze and 
Visualize Data   
120 Hours 

Design Time  
52 Hours

Build Data Lake 
and Ingest Data 
19 Hours

Model and 
Enhance Data 
46 Hours

Transform Data 
179.5 Hours

Deliver Data 
Not Needed

Analyze and 
Visualize Data   
110.5 Hours 

Project Level N/A 822 N/A 3,047

1Based on C3.ai Academy’s Fundamentals training timeline
2Console & Type Systems
3Data Integration, Methods, Timeseries, Metrics, Data Science Fundamentals, Analytics & DFEs, Jobs, and Queues
4UI Framework
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C3.ai + Azure No-Code (IDS)

We also compared our Azure Native’s metric results against C3.ai + Azure No-Code (i.e., the C3.ai Integrated 
Development Studio in combination with Azure) reference build metrics provided by C3.ai’s solution 
architects, and confirmed that the tracked metrics show favorably towards the C3.ai + Azure No-Code 
solution, both in less time spent developing, and lower lines of custom code needed.

Metrics from C3.ai + AWS Application Comparative Analysis

We also extracted comparable metric results from the previous efforts to build the Application using AWS 
Native tools. 

Table 7. Developer Experience Metrics (C3.ai + Azure No-Code)

Measured In Level Tracked C3.ai + Azure  
No-Code (IDS)

Azure  
Native Actuals

Metric Task

Amount of Time

Lines of Code

Developing the entire 
application with one 
FTE

Any customizations 
where configuration 
is no longer usable, 
and code is needed 
to achieve parity

Days

Integer

Project Level

Project Level

3 Days

14

90 Days

3,047

Table 8. Developer Experience Metrics from Previous C3.ai + AWS Application Comparative Analysis

Measured In Level Tracked C3.ai + AWS  
Low-Code

AWS  
Native Actuals1

Metric Task

Amount of Time

Lines of Code

Developing the entire 
application with one 
FTE

Any customizations 
where configuration 
is no longer usable, 
and code is needed 
to achieve parity

Days

Integer

Project Level

Project Level

5 Days

822

118.75 Days

16,000

1Metrics sourced from C3.ai + AWS Application Comparative Analysis document
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Developers found that having all the capabilities 
related to data ingestion, pipeline development, 
machine learning, and visualization in one place 
was extremely helpful when developing in C3.ai + 
Azure. In comparison, Azure Native is a general-
purpose computing platform and developers 
must pick the appropriate technologies out of 
an enormous lineup of services. Additionally, 
the purpose-built C3.ai Type system and 
configuration-based system means that once a 
developer is sufficiently trained and working on 
an appropriate problem space, the higher level of 

abstraction than Azure Native’s offerings mean 
increased productivity and fewer low-level details 
to understand, build, and maintain.

However, developers utilizing C3 AI Suite’s Type 
System miss the richness of developer tooling 
that has sprung up for mainstream programming 
languages and cloud-based configuration 
languages like ARM templates. 

The team captured visuals that showed the work 
they did on the Application in each platform.

Developer Experience Inputs

C3.ai + Azure – 5 Full-Time Equivalent (FTE) Days

Figure 13. Developer Inputs from C3.ai + Azure
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Azure Native – 90 FTE Days

Figure 14. Developer Inputs from the Azure Native Build
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‘Ilities in Detail

The team used a framework with six dimensions, called ‘ilities, to compare development of the Application 
on C3.ai + Azure to development on Azure Native. Each ‘ility presented below describes the definition of 
the ‘ility, shows the factors that make up the ‘ility, and assigns a numerical score to each factor following the 
below scale:

1. Does Not Meet Expectations

2. Somewhat Meets Expectations

3. Meets Expectations

4. Exceeds Expectations

5. Exceptional Performance

Additionally, each ‘ility includes detailed findings with additional observations. The six ‘ilities shown below 
are functionality, maintainability, usability, affordability, interoperability, and security.

In engineering, maintainability is the ease with 
which a product can be maintained to correct 
defects and their cause, repair and replace 
components, and prevent unexpected working 
conditions. Industrial predictive analytics 
applications on the scale of those on C3.ai + Azure 
are very complex. Compute happens across a vast 
and varied set of infrastructure, tools, platforms, 
and languages. Additional complexity is added 
as the solution must evolve to satisfy changing 
business requirements. Infrastructure services 

should be interchangeable and should scale to 
accommodate changing workloads. The ability 
to avoid downtime and correct defects is a key 
differentiator. 

Factors and Scores

To evaluate Maintainability in comparison 
with Azure Native, the team reviewed C3.ai + 
Azure across four factors: Pipeline Stability, 
Manageability, Flexibility, and Scalability.

Maintainability
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Pipeline Stability: 4 – Exceeds Expectations

The data types are very well-defined in C3.ai + 
Azure, which means that changing a data format 
requires only one change to the Ingest step, rather 
than needing to change the format throughout the 
pipeline, as required when building in Azure Native. 
As a result, this architectural design provides a 
significant advantage over Azure Native.

Manageability: 4 – Exceeds Expectations

In C3.ai + Azure, all code is version-controlled, 
making it simple for developers to manage 
changes, recover earlier versions, and analyze 
code in smaller chunks. By contrast, in Azure 
Native, extra effort is required, adding complexity 
to all three actions. 

In addition, C3.ai + Azure provides a layer of 
protection for production applications beyond 
Azure Native in situations where recovery 
operations are necessary. Teams can easily 
manage or upgrade underlying services, even 
if that means swapping out for a comparable 
service, when unexpected events pose a serious 
threat to the operability of a critical application.

Flexibility: 5 – Exceptional Performance

Based on the program’s ability to handle different 
use cases, data models and inputs as needed, 
and its abstraction layer which allows developers 
to quickly adjust lower-level details, C3.ai + Azure 
is exceptionally flexible in comparison to Azure 
Native.

Scalability: 5 – Exceptional Performance

Although all Cloud Service Providers (“CSPs”) 
allow developers to add capacity, the C3 AI Suite 

adds a layer of abstraction so that developers 
do not need to interact directly with the hosting 
platform infrastructure when more capacity is 
needed. Additionally, the ease with which data can 
be moved across data stores allows developers 
to scale through differing data storage solutions 
depending on solution fit for the use case.

Detailed Findings

Infrastructure Flexibility

As AI solutions become increasingly ubiquitous, 
development teams will often be deploying 
applications that comprise a critical part of 
business operations. The model-driven approach 
used to develop on C3.ai, including the modeling 
of infrastructure components, decouples 
custom code from the underlying architecture, 
which decreases the risk and impact caused by 
unexpected events. 

On C3.ai + Azure, making infrastructure changes 
is a simple developer task because of the 
abstraction layer the C3.ai Type System provides. 
Developers can modify existing resources and 
change the underlying infrastructure with minimal 
effort. Making infrastructure changes on Azure 
Native is also trivial when modifying existing 
resources; however, changing the underlying 
infrastructure (e.g., swapping PostgreSQL 
for Azure SQL) on Azure Native will require 
careful management of potential impacts to the 
environment. Any integration points with the 
changing infrastructure will have to be updated, 
and refactoring existing code will likely be 
necessary.
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For example, if a solution architecture included 
Cosmos DB and Microsoft released a critical 
update that required code changes, then the 
development team would have to upgrade their 
Cosmos DB instance and implement a fix. If the 
team built their solution on C3.ai + Azure, then a 
comparable data store could be used to replace 
Cosmos DB, or the corresponding model could 
be updated to leverage the latest changes. On 
Azure Native, the team would have to scramble to 
upgrade Cosmos DB and make necessary code 
changes, a risky undertaking that could lead to 
extended downtime and negatively impact key 
business processes.

Infrastructure Scalability

Leveraging the C3.ai Type System, developers can 
quickly provision environments capable of scaling 
without investing time in selecting and configuring 
the appropriate services. Azure Native requires 
customers to choose between a multitude of 
services and configure chosen resources properly. 
If configured correctly, Azure Native provides 
a platform for creating solutions that scale 
automatically and allows customers to minimize 
costs by leveraging the “pay-for-what-you-use” 
benefits of the cloud. Like the Azure Native 
experience, if specific resources are necessary 
for a particular use case, C3.ai + Azure also 
allows customers to be selective. Furthermore, 
the C3.ai Platform will automatically scale the 
entire data pipeline based on user settings and 
live throughput requirements. Users are able to 
manually intervene if needed to create additional 
resources.

ML Model and Pipeline Management

ML Pipeline and Deployment

C3.ai + Azure has a durability advantage over 
Azure Native because the training, deployment, 
and prediction processes exist in a single, closed-
loop system, thus minimizing the risks of a single 
point of failure causing disruptions to business-
critical functions. 

For example, in the Azure Native solution, once 
the machine learning model has been trained in 
Azure ML, a real-time inference pipeline can be 
generated from the training pipeline and deployed 
to a REST API for consumption. A Databricks 
job is triggered when new streaming data has 
been ingested to generate predictions using 
this endpoint and write them to storage. In C3.ai 
+ Azure, trained models can be written to an 
inference-pipeline, which generates predictions 
once incoming data are processed by C3.ai Data 
Flow Events and Analytics. Those predictions are 
then written directly to a C3.ai Type object. As a 
result, the C3.ai + Azure pipeline does not need to 
process data across services by using triggers, 
authentication, and endpoints. 

ML Model

In C3.ai + Azure, developers can create and handle 
new use cases with very little overhead when 
compared to Azure Native. 

If a model needs to update to include new features 
or train with a different algorithm, C3.ai + Azure 
can handle this easily by training the updated 
model and overwriting the current model in the 
inference pipeline. To do the same in Azure Native 
requires updates across multiple services, such 
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as the data transformation notebook in Azure 
Databricks and changes to models and pipelines 
in Azure ML Studio, causing a significant increase 
in development effort and a decrease in time to 
value. 

Data Model Management

Updating Data Models

When changing data models to handle new 
use cases, data models in C3.ai + Azure have an 
advantage over those in Azure Native, for two 
reasons: 

1. One-Step Updates. In C3.ai + Azure, 
data models are represented as C3.ai 
Canonical Models with fields that 
reference the data source, so that any 
change to the Canonical Model updates 
all the fields that reference that data. In 
Azure Native relational stores, any new 
data written to or deleted from one table 
will not propagate to its child tables 
unless configured to do so. 

2. Version Control. Relational stores in 
Azure Native are largely programmed as 
procedures such as SQL queries, rather 
than as objects such as C3.ai Types. 
Procedural programs are more difficult to 
version control and edit than C3.ai Types, 
because they must be written to delete 
and re-create tables if the data schema 
needs updating.

Monitoring 

Runtime Management

C3.ai + Azure is a fully managed platform, which 
eliminates the need for developers to create or 
configure dashboards to monitor infrastructure 
performance of production applications. 
Azure Native has strong tooling for monitoring 
performance; several important metrics can be 
monitored in dashboards that are available in the 
Azure Portal by default and additional dashboards 
can be configured to track other metrics of 
interest. 
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Usability is the ease of use and learnability of 
software that can be used by specified consumers 
to achieve quantified objectives with effectiveness, 
efficiency, and satisfaction in a quantified context 
of use. To achieve this, teams that implement 
predictive applications should have an easy-
to-understand development environment with 
the tooling and support they need to work 
productively. Platforms that allow developers to 
learn and create with ease and have reliable native 
and third-party support rate highly in usability.

Factors and Scores

To evaluate Usability in comparison with 
Azure Native, the team reviewed C3.ai + Azure 
across two factors: Developer Efficiency and 
Developing the Mental Model.

Developer Efficiency: 4 – Exceeds Expectations

With the C3 AI Suite, C3.ai + Azure covers all the 
requirements to develop an AI solution in the 
cloud. The features needed to process data, 
manage ML pipelines, and create user interfaces 
are available in one place, which is helpful for 
developers who may be overwhelmed by the need 
to manage several services for the same purpose 
in one of the other cloud platforms.

Developing the Mental Model: 4 – Exceeds 
Expectations

C3.ai + Azure performs well in this area by 
combining the work of several different services 
in a typical AI developer environment in one place. 
The training offered is comprehensive enough 
for a new developer to understand the basics 

for creating custom solutions. While there is a 
steep learning curve to using C3.ai Types, once 
the concepts are understood the elegance of the 
architecture means that only a few components 
need to be learned for the Application. If there 
are any knowledge gaps, developers can 
reference the C3.ai community, trainings, and 
documentation. The simplicity of the C3 Ai Suite 
is an advantage that elevates C3.ai + Azure over 
more complex platforms like Azure Native.

Detailed Findings

Developer Tools

The C3.ai + Azure solution leverages the C3.ai 
Type System to efficiently create and manage 
robust data models and ML pipelines without 
the need to manage multiple environments, 
services, and programming languages. C3 AI 
Suite’s Standardized Design Language (SDL) 
also tightly integrates with C3.ai Types to create 
consistent, efficient, and scalable user interfaces 
that include components such as graphs, maps, 
status summaries, and filters out of the box. Azure 
Native, in comparison, utilizes different services 
for each part of the architecture. Developers 
must jump between these services to create and 
validate business logic, which hinders developer 
productivity.

C3.ai Types also provide the additional benefit 
of type annotation, a tool that allows users to 
document the business logic of all C3.ai Types, 
including data models, pipelines, metrics, etc. This 
tool benefits users who are collaborating on the 
platform or referencing previous work and has no 
equivalent on Azure Native.

Usability
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Community

The Azure Native solution consists primarily 
of Azure services, Databricks, and Power BI. 
The Microsoft Tech Community is a web forum 
managed by Microsoft for discussion around 
various services such as Office 365, Bing, and 
Azure. However, this forum does not have a section 
for Power BI and the Azure content is sparse at 
around 3,000 entries. This is in comparison to that 
on popular forums such as Stack Overflow, which 
has 8,000+ results with the Power BI tag and 
80,000+ results with the Azure tag. Databricks also 
has its own native community with about 6,000 
posts, with an additional 2,000 posts in Stack 
Overflow. C3.ai has a much smaller community, 
since its tool has a much smaller user base 
compared to Azure Native. The key disadvantage 
to this is that results are not likely to populate 
through the search engine and the available posts 
likely provide inadequate coverage of potential 
questions, especially for smaller topics such 
as Machine Learning and Security. As a result, 
answers to questions on the C3.ai Community 
forum are largely dependent on the effort and 
availability of C3.ai staff.

Training

Microsoft offers 50 certifications and exams 
across various Azure services. There are more 
than 100 mini-courses on their website to learn 
how to set up Azure resources and develop on 
their platform. In addition, instructor-led training is 
available through Microsoft Learning Partners, a 
worldwide partner network that delivers flexible, 
role-based, customized training and certifications 
in Microsoft technologies in blended learning, 
in-person, and online formats. Many free and 

paid third-party courses for Azure also exist on 
the internet. C3.ai has fewer and more focused 
training programs for the C3 AI Suite (Low-Code), 
IDS (No-Code), and ML Studio (Machine Learning) 
offerings. Trainings are administered by C3.ai in-
person or remotely through Coursera with office 
hours held by C3.ai staff. 

Documentation

Microsoft has very extensive documentation on 
most Azure services. Most search results lead to 
one or more relevant web pages with tutorials, 
example code, and explanations. However, 
documentation was not available to explain the 
functionality of some of Azure’s newer or recently 
updated services. Power BI documentation is 
not as comprehensive. In some cases, it was 
challenging to understand specific functions 
because the documentation did not include 
example code. For C3.ai, documentation is not 
available through the search engine; partners and 
customers must access documentation through 
the C3.ai developer portal. The information is 
comprehensive on both development topics 
and specific C3.ai Types. However, unlike the 
documentation on Azure, various filters are used 
for navigation rather than a hierarchy of articles 
on the left pane. Documentation is not an area of 
differentiation as both platforms provide a more 
than adequate level of documentation for their size 
and complexity.

Support

User Management

Azure Native has standard user management 
features to control the roles and access privileges 
of users. This can be used to restrict users from 
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accessing, changing, and provisioning specific 
resources. C3.ai + Azure offers similar functionality 
with permissions and access conditions for roles 
in both their low-code and no-code environments. 
This is not an area of differentiation between C3.ai 
+ Azure and Azure Native.

Service Level and Support

Azure Native has 99.95% average uptime across 
all its services. The Service Level Agreement 
promises different uptimes ranging from 99% 

to 99.999% depending on the service, its tier, 
and the number of availability zones to which it 
is deployed. When services are down, support 
engineers promise an initial response time ranging 
from 15 minutes to 8 hours, depending on the 
Azure support plan. C3.ai + Azure relies on not only 
the uptime of the same Azure resources as Azure 
Native but also those managed by C3.ai. C3.ai also 
promises uptimes ranging from 99% to 99.9% and 
has maintained an average of 99.95% uptime over 
the last twelve months.  

Affordability is the solution’s overall cost including 
acquisition and ongoing maintenance.

Factors and Scores

To evaluate Affordability in comparison with 
Azure Native, the team reviewed C3.ai + Azure in 
comparison to Azure Native across three factors: 
Developer Productivity; Ramp-Up Time; and 
Design Time. 

Developer Productivity: 4 – Exceeds 
Expectations

Due to its being a single platform containing 
all required components and integrations, it is 
easy for a single developer to create a predictive 
analytics application on C3.ai + Azure. It only took 
each of the team’s developers five business days 
to create the Application. It is a much more labor-
intensive task for a single developer to create a 
similar predictive analytics application on Azure 
Native; in fact, it takes 18 times as long.

Ramp-Up Time: 4 – Exceeds Expectations 

When developing on C3.ai + Azure, each 
developer must learn the C3.ai Type System, and 
it takes 3-6 months to become truly proficient. 
Proficiency with Azure Native takes much longer, 
as there are a variety of different reference 
architectures and use cases to master.
 
Design Time: 5 – Exceptional Performance

One of the most time-consuming tasks in Azure 
Native is design time – working through the high-
level architecture, deciding on which components 
and services to utilize, and detailing and revising 
the solution as the build takes shape. Frequent 
updates to the platform provide more options but 
make architectural decisions more challenging. 
Although the team came into the comparative 
analysis project with a reference architecture 
in mind, and it was agreed to very quickly, 
approximately 52 hours were spent in design time. 
With C3.ai + Azure, the solution was pre-built, 
which cut design time to near zero.

Affordability
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Detailed Findings

There are additional considerations that impact 
the Affordability of C3.ai + Azure in comparison 
to Azure Native. The main consideration is Total 
Cost of Ownership (“TCO”), which is related to 
Maintainability.

Total Cost of Ownership (“TCO”)

The C3 AI Suite’s model-based architecture builds 
in a lower TCO when compared to cloud native 
solutions. It uses an abstraction layer that facilitates 
and shortens typical developer activities, such as:

• Learning the platform language and 
architecture

• Building low-code and no-code solutions 

• Fixing bugs

• Creating new ML models

• Changing integrations to data sources and 
services

• Changing integrations to the underlying CSP 
infrastructure, such as adding Databricks to 
Azure

When using C3.ai + Azure, fewer developers are 
required to build solutions, and each developer 
takes significantly less time to perform each 
activity; for example, building a predictive analytics 
application takes one FTE five days, while building 
the same application on Azure Native takes three 
FTEs 30 days (see details here). The additional 
complexities and customizations involved in the 
Azure Native solution impact the above listed 
developer activities and will naturally require 
higher levels of ongoing operational costs to 
maintain and enhance, thus driving up TCO. This 
results in a lower overall TCO for C3.ai + Azure in 
comparison to Azure Native.

In software engineering and systems engineering, 
a functionality refers to a function of a system or 
its component, where a function is described as 
a specification of application behavior between 
outputs and inputs. All functionality that is provided 
by the platform accelerates the time to value for 
any applications that are built on it. 

Factors and Scores

To evaluate Functionality in comparison with 
Azure Native, the team reviewed C3.ai + Azure’s 
suite across one factor: AI Platform.

Functionality
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AI Platform: 4.5 – Exceeds Expectations

The platform allows developers to create data 
pipelines, machine learning models, and gather 
analytical insights very simply. C3.ai + Azure seems 
to follow industry best practices in all of these 
aspects by default and developers can create 
a robust data and analytics pipeline with little 
overhead. In addition, the platform does a good 
job of abstracting away service level details and 
allows users to focus on application development.

Detailed Findings

Provision Infrastructure

C3.ai is a fully managed platform that leverages 
a model-driven approach to provide a layer of 
abstraction on top of the underlying infrastructure 
components. Thus, teams using C3.ai + Azure 
are not required to have significant knowledge of 
the Azure services used to comprise a solution’s 
infrastructure. 

On Azure Native, the Azure Resource Manager 
(ARM) service provides a unified experience 
for provisioning infrastructure across nearly all 
services on the Azure platform. Customers have 
the option of deploying services via the Azure 
Portal (no-code) or using ARM templates (code). 
While the functionality provided by ARM templates 
is substantial, enabling an infrastructure-as-code 
approach, the syntax and authoring toolchain 
for ARM templates are complex and require 
experience to take full advantages of the features 
provided. Either option requires users to have an 
understanding of the resources available on Azure 
and some knowledge of networking to deploy 
anything beyond a basic architecture.

Define Data Model

The advantage of data modeling in C3.ai + Azure 
is the ease of manipulating C3.ai Type objects 
compared to that of relational data stores in Azure 
Native. In Azure Native, database schema are 
the data models for relational data stores and 
each model represented as a table. Therefore, 
any deviations of the data model from the source 
data schema requires the defining of parent-
child table relationships, the setting of primary 
and foreign keys, and complex joins. In contrast, 
C3.ai Types, which are represented as objects 
that reference the source data directly, provide 
more freedom when creating the data model 
because entity attributes can be defined through 
expressions, which abstract the data manipulation 
logic from the user. This abstraction layer allows 
the user to interface with the data (specifically 
using Canonical and Transformation Types) 
without requiring knowledge of the source data. 
A developer on Azure Native would typically be 
required to understand how to model data for 
multiple data sources.

Build Data Integration

Data integration on C3.ai + Azure is simplified 
by the C3.ai Type System. Developers on C3.ai 
+ Azure define Canonical Models to represent 
business objects located in one or multiple data 
stores. Downstream interactions with objects 
represented as Canonical Models can be 
implemented with no dependence on the source. 
Additionally, effort to create transformations, 
manipulate time-series data, and generate alerts 
is significantly reduced using C3.ai Types that 
leverage the native, asynchronous processing 
engine. As a result, data pipelines built on C3.ai + 
Azure are inherently maintainable and scalable. 
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On Azure Native, significant effort and experience 
is necessary for a developer to establish data 
pipelines that support a typical AI solution – 
massive data volume, varying data sources, and 
diverse data structures. Multiple services exist on 
Azure to support this effort with drag-and-drop 
interfaces, but no single service abstracts the full 
spectrum of data integration tasks which can be 
defined using the C3.ai Type System.

Process the Data

Time Series & Metrics

Harnessing the power of IoT for AI solutions 
requires development teams to handle large 
amounts of unstructured, time-series data. C3.ai 
makes it less complex for developers to tackle 
these problems using metric Types. Using the 
C3.ai Type System, teams can define time-series 
transformations of normalized data across space 
and time with minimal code. For example, a simple 
metric could be used to find the average voltage 
of all Smart Devices in a particular building the last 
month. AI solutions often require more complex 
transformations than averaging a single data 
point, so developers on C3.ai must also implement 
compound metrics. Similar to simple metrics, 
developers can define compound metrics using 
C3.ai Types with minimal code – typically one line 
of expression-like syntax in a file with other basic 
metadata (e.g., metric name). Additionally, the 
C3.ai Developer Console provides functionality 
for customers to quickly iterate on metric 
implementations and visualize the output. 

Achieving a similar feedback loop on Azure 
Native typically requires the integration of multiple 
services or experience with common visualization 

libraries that are available in Azure machine 
learning environments (e.g., Matplotlib, Seaborn). 
The team found that implementing similar metrics 
on Azure Native, both simple and compound, 
required leveraging common Python libraries used 
by data scientists, and took on average 10x longer.

Analytics

AI solutions often provide value to end users via 
notifications. On C3.ai + Azure, Analytic Types 
make it easy for developers to trigger alerts based 
on Data Flow Events and previously defined 
Metrics. Developers have the option to override 
processing behavior by implementing custom 
logic in JavaScript, making it possible to satisfy 
diverse business requirements. For example, the 
team configured an alert any time a device was 
defective with a simple JavaScript implementation 
based on the HasEverFailed Metric. Any 
Analytics defined on C3.ai + Azure leverage an 
asynchronous processing engine, the Analytics 
Container Engine, to notify users when thresholds 
defined by the business are exceeded as new data 
are received. 

Implementing Analytics on Azure Native required 
the team to inject custom notification logic in the 
Transform step of a data pipeline to imitate the 
functionality provided by the C3.ai Asynchronous 
Processing Engine. The team found this took 
twice as long on Azure Native for developers with 
previous data wrangling experience and expected 
a greater level of maintenance effort to be required 
in the future.
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Error Handling and Logging

While the solution returns error messages when 
provisioning, the wording in the messages is not 
as specific as developers would need to easily 
identify the issue. Troubleshooting was somewhat 
challenging given the fact that the user was 
required to interact with the API (making individual 
calls) to inspect important data. A suggested 
improvement is to create a job/worker/queue 
dashboard to surface the errors as they occur. 

However, the C3 AI Suite does provide a robust 
logging mechanism for deployed applications. It 
automatically collects usage data from all points in 
the pipeline and makes that data easily accessible 
to users. In contrast, a developer would need to 
aggregate this information from multiple services 
while using Azure Native.

Data Science & Machine Learning

Feature Engineering

Feature engineering is the process of using 
domain knowledge of the data to create features 
that make machine learning algorithms work.

Features in ML models consist of transformations 
and enhancements to the Application’s source 
data and metrics. If the feature engineering part 
of the pipeline requires heavy data transformation 
work, then a programming environment such 
as Jupyter Notebooks is recommended. C3.ai + 
Azure and Azure Native both have a version of 
Notebooks integration, so this is not an area of 
differentiation. However, outside of Notebooks, 
C3.ai + Azure has the advantage of C3.ai 
Transforms, which provide a layer of abstraction 
from data transformation logic. This allows 
complex data transformations to be defined as 

simple expressions, significantly simplifying the 
feature engineering process. As a result, feature 
engineering on C3.ai + Azure is more capable and 
simpler to code than feature engineering on Azure 
Native and other competing platforms.

ML Model Tuning

Given a set of machine learning features and a 
machine learning algorithm, there are ways to 
control the machine learning process to yield 
different and perhaps better results. The main 
methods of model tuning include re-sampling 
the data (over and under-sampling), changing the 
algorithm’s hyperparameters, and specifying a 
specific solver for the algorithm. C3.ai + Azure and 
Azure Native both support these functions and the 
team did not experience any area of differentiation 
between the two platforms.

ML Model Evaluation

Model evaluation involves the analysis of 
performance metrics across different models, 
thresholds, and score bins. Typical metrics 
include accuracy, precision, recall, F1-score and 
predictions versus actuals, such as false positive 
rate and true positive rate. These metrics can also 
be extrapolated into graphs such as a ROC curve 
or precision-recall curve. Both C3.ai + Azure and 
Azure Native offer this functionality out of the box. 
In Azure Native, performance metrics, graphs, and 
score bin data are automatically displayed in a 
visual interface. On C3.ai + Azure, these evaluation 
parameters must be extracted programmatically 
by executing individual commands through 
the C3.ai developer console. There are also no 
commands to display graphs or change the 
threshold post-training. Therefore, Azure Native 
has a slight advantage over C3.ai + Azure in this 
space.
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User Interface and Programmatic Tooling 

Business Intelligence Integrations 

C3.ai + Azure can integrate with SDL to solve 
most common business intelligence use cases. 
SDL provides components such as graphs, maps, 
status summaries, and filters out of the box. For 
more complex use cases requiring a third-party 
business intelligence tool, it is possible to connect 
directly to the C3.ai + Azure data source. 

As it stands, developers would need to leverage 
the API generated by the C3.ai Type System or 
connect directly to the underlying data service to 
integrate with an external business intelligence 
solution. While it is very similar to what an Azure 
Native solution would require, this solution causes 
developers to lose the service abstraction usually 
gained when using the C3 AI Suite. To that end, 
C3.ai is currently developing a native Power BI data 
connector so that developers can easily integrate 

with Microsoft’s BI solution without needing to 
know the underlying services. This will give C3.ai 
+ Azure a significant advantage over an Azure 
Native solution. 

API Gateway

An API Gateway provides a single-entry point 
to a defined group of services. It often provides 
management features around common API 
functionality such as security, caching, and load 
balancing.

C3.ai + Azure automatically generates a basic API 
from the C3.ai Type System, saving development 
time that would be spent to develop data access 
methods, create API specifications, provision an 
API environment, configure CORS, and write unit 
tests. 

Interoperability is the solution’s ability to interact 
effectively with other systems or components.

Factors and Scores

To evaluate Interoperability in comparison with 
Azure Native, the team reviewed C3.ai + Azure 
across three factors: Integration, Delivery, and 
Portability.

Integration: 4 – Exceeds Expectations

Based on the team’s experience with C3.ai + 
Azure, it appears the Application can bring in data 

from any source, and the developer can easily 
transform data into C3.ai Types using an object-
oriented model. 

Delivery: 4 – Exceeds Expectations

Currently it is not possible to integrate 
visualizations built on the C3.ai platform with 
other applications. The ability to leverage a BI 
solution (Power BI, Tableau, Qlik, etc.) using data 
connections is an interoperable strength of Azure 
Native. While it is possible to leverage the API 
generated by the C3.ai platform to integrate with 

Interoperability
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external BI solutions, there are currently no native 
data connectors to facilitate a simple connection. 
However, C3.ai is actively developing these data 
connectors including PowerBI, which will allow it 
to match the visualization interoperability of Azure 
Native.

Detailed Findings

Data Integration 

Canonical Model

C3.ai Canonical Models are a subset of the C3.ai 
Type System that represent key business objects 
from existing IoT and enterprise systems. Defining 
Canonical Models on C3.ai + Azure significantly 
reduces data integration efforts because these 
Types can take advantage of the C3.ai Type 
System native capability to read/write Types 
across a wide variety of data stores. In contrast, 
developers working on Azure Native have to 
define data models specific to chosen data stores, 
which is a rigid approach that leads to increased 
maintenance as solutions evolve. A more robust 
architecture would likely involve an Object 
Relational Mapping (ORM) library, but no existing 
ORMs support spanning multiple data stores. The 
tradeoff of using the C3.ai Type System to define 
data models is that C3.ai Types are proprietary 
to the C3.ai platform. These models cannot be 
exported and used outside of the platform nor can 
outside models be imported directly into the C3.ai 
platform before being redefined using the Type 
System.

API (Application Programming Interface)

Exposing data is an essential part of delivering 
business value from AI solutions, and C3.ai 
provides an out-of-the-box API for end users to 
consume all data on the platform to analyze and 

derive insights. On Azure Native, development 
teams typically spend 2-3 weeks developing 
custom APIs that require maintenance 
and performance monitoring. To maximize 
interoperability, API solutions should implement 
the Open Data Protocol (OData) in order to simplify 
consumption and take advantage of inherent 
integrations with common reporting solutions 
(e.g. Excel, Power BI, Tableau). An additional 2-3 
weeks of effort is needed to properly build APIs 
that comply with OData, but an early investment 
of resources will allow teams to focus more on 
business needs and less on development. 

C3.ai is also actively developing a native Power 
BI data connector which would allow developers 
to connect to a C3.ai + Azure solution without 
needing to consider the underlying data store or 
even use the generated API. 

Data Storage

The C3.ai Type System makes it easy to connect to 
various data sources with simple Type definitions. 
Any Types defined in C3.ai as persistable will be 
stored in Postgres by default. Adding more Data 
Source Types is straightforward – developers 
can use any of the numerous templates for 
common open source and cloud data stores or 
setup custom configurations. While it’s possible 
to integrate with open source or other CSP data 
stores using Azure Native, developers usually 
design architectures comprised of Azure services 
to maximize efficiency and leverage native 
integrations. Integrating with external data stores, 
such as AWS DynamoDB, would lead to additional 
configuration efforts and potentially require 
custom development. See example storage 
options below:
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Table 9. Data Storage Types for Predictive Analytics Application on C3.ai + Azure and Azure Native

C3.ai + Azure Azure NativeStorage Type

Relational

Key-Value

Multi-Dimensional

Postgres (Default)

AWS RDS

GCP Cloud SQL

All Azure Offerings

and more…

Cassandra

AWS DocumentDB

GCP Cloud Firestore

All Azure Offerings

and more…

AWS Redshift

GCP BigQuery

All Azure Offerings

and more…

Azure SQL

Azure Postgres

Azure MySQL

Azure Blob Storage

Azure Cosmos DB

Azure Synapse SQL DW

HBase in HDInsight
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Security is the solution’s ability to prevent 
unauthorized disclosure, loss, modification, or use 
of its data or functionality. This is a critical concern 
for mission critical predictive applications that 
are on based on extremely sensitive business 
data, as an attacker could cause critical harm to 
business operations. Security can be divided 
across the following sub-criteria: Secure Design, 
Authentication, Access Control, Encryption, and 
Auditability.

Factors and Scores

To evaluate Security in comparison with Azure 
Native, the team reviewed C3.ai + Azure across 
multiple factors typically included in Virtual Private 
Clouds.

Security: 3 – Meets Expectations

C3.ai + Azure offers security like that of other 
Cloud Service Providers. Role-Based Access 
Controls are included as well as an OAuth 
implementation out-of-the-box using Okta. Roles 
and Groups are defined as JSON objects in the 
project solution so they can be added to a code 
repository for better version control.

Security
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Proven Results in 8-12 Weeks Visit c3.ai/get-started

Conclusion

A team of three experienced software engineers built a simple predictive analytics application  
for AI-enabled devices on C3.ai’s no-code platform – the C3 AI Suite – in combination with Azure  
(“C3.ai + Azure”), and compared it to building a similar application using only Azure native services  
(“Azure Native”).
 
The team found that building the application on C3.ai + Azure accelerated development by a factor  
of 30 times over Azure Native, while reducing effort and risk through C3.ai’s model-driven architecture.  
The team also concluded that C3.ai + Azure required significantly less development code than Azure  
Native and is more pleasant to work with overall. 

Metrics

90 days

3,047

3 days Reduced by 30x

Reduced by 217x14

Azure Native  
Low-Code

C3.ai No-Code (IDS) 
+ Azure

Effort Comparison Using  
C3.ai + Azure

Total Effort (FTE Days)

Lines of Custom Code
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