AI for Fleet Readiness across the U.S. Department of Defense


The average age of the USAF aircraft fleet is 28 years. Many of these aircraft platforms, such as the E-3 Sentry, have no designated replacements and are likely to be flying continuously for the next 10 to 20 years. At the same time, fifth-generation fighter platforms, such as the F-35 Lightning II, have been beset by operational challenges rooted in the immature state of the aircraft’s complex systems.

The downtime cost for an aircraft in the USAF can be in excess of $28,000 per hour. Mission aborts, aircraft breaks, repeat/recur events, and spare part unavailability all impact aircraft mission capability and aircraft readiness.


To address these issues, the USAF implemented C3 AI Readiness, an AI-based solution to effectively predict subsystem failure, identify necessary spare parts, and proactively highlight opportunities to increase mission capability. For the initial project, C3 AI and the USAF worked to aggregate 7 to 10 years of operational data from 10 to 12 sources and then applied AI to identify when aircraft subsystems would fail.

The first phase, focused on performing a comprehensive mean-time-between-failure (MTBF) analysis across all aircraft components to characterize aircraft component lifecycle performance, pinpoint the subsystems that would benefit most from artificial intelligence classifiers. During the second phase, the teams developed 440,000 machine learning algorithms and state-of-the-art NLP analytics and trained 30 classifiers to calculate the probability of failure on high-priority subsystems.


increase in aircraft mission capability
reduction in unscheduled maintenance on monitored systems
reduction in Mission Impaired Capability Awaiting Parts

Using the C3 AI Readiness application, USAF maintenance and logistics staff are able to:

  • Monitor component expected remaining life
  • Optimize scheduled maintenance activities
  • Identify high-risk aircraft subsystems before they fail
  • Isolate potential failure root cause and provide AI-informed technical actions
  • Leverage AI predictive supply chain and maintenance recommendations to ensure part inventory adequacy
  • Streamline decision-making through near-real-time access to data and AI insight

The USAF team can analyze equipment health at any level of aggregation—including aircraft systems and sub-components, impact and risk, squadron, command, operational status, and geographic location.

About the U.S. Air Force

  • 5,456 aircraft with an average age of 28 years
  • 59 air bases in the U.S. and more than 100 airfields overseas
  • 450,000 active personnel and 150,000 reservists
  • 17,000 pilots, navigators and air battle managers

Project Highlights

  • 24 weeks from kick-off to production for E-3 Sentry, C-5M Super Galaxy and F-16 Fighting Falcon platforms
  • 7–10 years of historical data
  • 10–12 sources, over 440,000+ analytics
  • 20–30 machine learning classifiers developed concurrently

Proven results in weeks, not years

Get insights into C3 AI’s capabilities, enterprise AI best practices, and highest-value use cases.
Gain insights into the C3 AI Platform's capabilities, its model-driven architecture, and test it against your company's sample data set.
Identify a high-impact business problem and collaborate with the C3 AI team to rapidly build an AI application that solves it.
Scale and deploy a tested C3 AI application into production. Incorporate user feedback and optimize algorithms to drive maximum economic value.

Want more information?

Contact us