Optimize Inventory Levels for a $30 Billion Global Discrete Manufacturer
Project Challenge
To significantly reduce the inventory levels of purchased parts for complex industrial product manufacturing, a leading North American discrete manufacturer implemented C3 AI Inventory Optimization on AWS.
The manufacturing company operates hundreds of factories globally and makes highly complex industrial equipment. Because the manufacturer carries more than $4 billion in inventory, the ability to reduce inventory at scale drives significant financial benefit for the company.
Prior to engaging with C3 AI, the manufacturer had experimented with various inventory optimization software offerings. However, existing software solutions were unable to dynamically optimize inventory levels of individual parts at scale while managing uncertainty and learning continually from data. By implementing C3 AI Inventory Optimization, the manufacturer reduced inventory levels as much as 35 percent.
About Fortune 200 Manufacturing Company
- $30B Annual Revenue
- 180 Years in Operation
- 60,000 Employees
Project Highlights
- 12 Weeks Project Completion
- 42 Files
- 9M Rows of Data
- 3.2M Material Movement Events
Accurately Predicting Variability
The company’s products are configured with hundreds of individual options, leading to products that have thousands of permutations. This drives significant complexity in managing inventory levels during manufacturing. To negotiate this complexity, factories often hold excess inventory to fulfill their orders on time.
In order to manage these uncertainties, company analysts – lacking any tools to help them make informed decisions – used their past experiences to maintain excess inventory. Key sources of uncertainty include variability in demand, supplier delivery times, quality issues with items delivered by suppliers, and production line disruptions.
To reduce inventory costs and improve analyst performance, the customer selected C3 AI to conduct a trial of the C3 AI Inventory Optimization application. The company set up the application on one product line at one factory, with plans to scale the solution for other product lines and factories.
Over the course of the trial, the C3 AI team accomplished the following:
- Received, loaded, and processed data for production orders, product configurations, bill of materials, part movement events, historical settings of reorder parameters, and lead time and shipping costs from suppliers
- Created a unified object model to represent all the inventory data, using 15 C3 AI Types
- Recreated historical inventory levels of individual parts by processing the various movement of parts from the point of arrival from suppliers to the factory production line
- Developed a machine learning/AI algorithm to compute part-level demand forecasts based on production orders and assemblies, traversing multi-level, time-varying BOM files
- Developed a stochastic optimization algorithm to dynamically optimize inventory levels
- Configured the application user interface to provide actionable insights to reduce inventory holding costs
Results
28%-52%
Savings in inventory holding costs
$100M-$200M
Annual economic value