Enterprise AI in Finance is the introduction of predictive analytics such as machine learning and generative AI in enterprise processes of banks, investment management firms, and insurance companies to drive digital transformation. By making accurate predictions, artificial intelligence in finance can transform customer experiences, boost personnel productivity, find new growth from data-driven services, and improve compliance and risk management.
As the data managed by financial services companies has exploded in volume, variety, veracity, and velocity, financial institutions have realized that AI can harness the data’s value through analysis and predictions that can make customer-facing and back-end processes more efficient and performant. While initial implementations of machine learning in finance were limited to select back-end and compliance processes such as anti-money laundering investigations, increasingly sophisticated use of deep learning and LLM-powered generative AI technologies are now being used to shape entirely new customer experiences and services.
Artificial intelligence and finance are complementary given the centrality of data and digitization in financial services. AI can have a profound impact on all aspects of financial institutions:
Tom Zschach, Chief Innovation Officer, SWIFT
The following are a select subset of high priority use cases for the application of AI in financial services:
Enterprise Search: Personnel in financial institutions must navigate diverse data sets and software systems to find answers to their business questions. Generative AI driven enterprise search can accelerate time-to-insight and help make financial services data accessible and usable.
Revenue Management: Sales and Relationship Managers often struggle in prioritizing opportunities to focus their time and energies on and generating realistic revenue forecasts. Machine learning models can accurately identify the opportunities with highest likelihood to close, the ones most likely to slip, and the actions that can help meet revenue forecasts.
Customer Churn: Financial institutions pay a high price when customers unexpectedly leave, especially when the customer is profitable, and expensive to replace. AI models can accurately predict customers most likely to churn, even in hard-to-judge businesses such as cash management and recommend actions most likely to prevent customer churn.
Customer Profitability: A major driver of profitability for financial institutions is the revenue/customer and the number of services each customer is using. AI applications can make personalized omni-channel recommendations of additional services with the highest likelihood for purchase by a particular customer.
Claims Processing: Claims filing, processing, and management is a major determinant of customer experience and enterprise profitability for insurance companies. AI-driven claims management helps accelerate decision-making delivering faster processing times at lower cost for insurance companies.
Customer Lending: Credit decisions in banks can often get bogged down in paper-work and lengthy workflows leading to frustrated customers and high cost of lending. AI applications can help segment credit applications, make swift recommendations for obvious yes/no applications, and help accelerate the time it takes overall for credit application processing.
Securities Lending: Due to the high uncertainty inherent in securities lending, existing processes routinely reject thousands of executable borrower requests. Machine learning techniques help banks predict the likelihood of each borrower request converting to execution and help make the most profitable lending decisions.
Intraday Liquidity Management: Up to a third of a bank’s total cash reserves go towards meeting intraday liquidity requirements. AI models can use the latest information and historical data to make accurate predictions of intraday inflows and outflows, optimize intraday liquidity buffers, surface potential liquidity risks, and free up redundant intraday reserves.
AML Investigations: Money laundering and illegal activity financing strategies are dynamic, fast-moving challenges for compliance organizations across the financial crimes sector. The rising risks associated with money laundering, combined with constantly evolving regulatory requirements, have defined the need for AI applications that can accurately identify, prioritize, and report suspicious activity, while simultaneously reducing the number of false positives.
Fraud Detection: Financial institutions are consistently challenged with instances of financial fraud, such as account takeover attacks, identity theft, credit card fraud, false insurance claims, or cybertheft. AI models help pinpoint patterns in transactional data streams, flag potentially fraudulent transactions, and reduce the number of false positives.
There are many challenges in implementing AI finance solutions. Many of the traditional financial institutions have a patchwork of decades-old IT systems that are challenging to use in powering digital transformation. Regulatory requirements and data privacy considerations introduce many complexities in how data can be deployed and used to power AI applications. Country and regional differences make it harder for enterprises to create AI applications that can scale globally while meeting local requirements. At the same time many of the incumbent companies are constantly challenged by new technology-driven and digitally savvy entrants that are using AI to transform customer experiences and offer speed and cost advantages that are hard for traditional players to match.
If you are initiating the implementation of AI or machine learning in finance, there are many considerations, including:
Transform financial crime detection with machine learning
Learn more
Use AI for credit origination, approvals, and risk monitoring
Learn more
Prevent customer attrition by identifying anomalous balance reductions
Learn more
Next-generation revenue management using AI for complete pipeline intelligence
Learn more
This website uses cookies to facilitate and enhance your use of the website and track usage patterns. By continuing to use this website, you agree to our use of cookies as described in our Privacy Policy.