Reliability is the application of data analytics, including AI machine learning, to predict when an asset will fail or otherwise deteriorate, so that it can be serviced or replaced before failing. The benefits include lower costs, reduced unplanned downtime, increased safety, higher rates of asset utilization, and extended asset life. Enterprise AI reliability software applications are widely used in many industries including manufacturing, aerospace, defense, energy, oil and gas, chemicals, and pharmaceuticals.
A machine learning model for AI-based reliability can be trained using historical data from a number of data sources, including telemetry from sensors embedded in the asset and sensors in associated systems and subsystems. Other relevant data sources may include service records, maintenance and operator logs, weather and location data, photographic and video images, and other operational data. The machine learning model (or models) applies sophisticated mathematical and statistical methods to calculate a probability score that an asset will fail within a specific time frame, allowing operators to take action in advance.
Reliability is one of the highest value use cases for enterprise AI software, with a proven track record of delivering measurable economic, environmental, and human safety benefits. Modern AI machine learning techniques can be applied to a vast range of asset types and environments to create models that can predict failure with a high degree of precision, with low rates of false positives and false negatives. These models can be incorporated into applications to trigger automatic actions and alert operators to schedule required maintenance.
Some examples of AI-driven reliability include:
C3 AI provides both a pre-built SaaS reliability application, C3 AI Reliability, as well as the C3 AI Platform, a complete, end-to-end platform for developing enterprise AI applications. The C3 AI Reliability application provides a full array of pre-built functionality that can be rapidly configured and deployed to accelerate implementation and time to value. The application provides a closed-loop workflow enabling organizations to monitor asset health in real-time, predict asset failure with a high degree of confidence and consistency using advanced AI algorithms, visualize risk across asset portfolios, diagnose asset-level conditions, take preventive action ahead of failures, and track performance.
For organizations that want to build custom reliability applications, the C3 AI Platform provides all the tools and capabilities required to rapidly design, develop, and operate advanced, industrial-scale enterprise AI applications. The unique model-driven architecture of the C3 AI Platform allows organizations to build AI applications with far less code, time, and effort than other approaches. C3 AI also provides a proven methodology and best practices for developing AI applications, based on a decade of experience in working with some of the world’s largest organizations on industrial-scale use cases.
This website uses cookies to facilitate and enhance your use of the website and track usage patterns. By continuing to use this website, you agree to our use of cookies as described in our Privacy Policy.